
6 | APPLICATIONS OF
INTEGRATION

Figure 6.1 Hoover Dam is one of the United States’ iconic landmarks, and provides irrigation and hydroelectric power for
millions of people in the southwest United States. (credit: modification of work by Lynn Betts, Wikimedia)

Chapter Outline
6.1 Areas between Curves

6.2 Determining Volumes by Slicing

6.3 Volumes of Revolution: Cylindrical Shells

6.4 Arc Length of a Curve and Surface Area

6.5 Physical Applications

6.6 Moments and Centers of Mass

6.7 Integrals, Exponential Functions, and Logarithms

6.8 Exponential Growth and Decay

6.9 Calculus of the Hyperbolic Functions

Chapter 6 | Applications of Integration 623



Introduction
The Hoover Dam is an engineering marvel. When Lake Mead, the reservoir behind the dam, is full, the dam withstands a
great deal of force. However, water levels in the lake vary considerably as a result of droughts and varying water demands.
Later in this chapter, we use definite integrals to calculate the force exerted on the dam when the reservoir is full and we
examine how changing water levels affect that force (see Example 6.28).

Hydrostatic force is only one of the many applications of definite integrals we explore in this chapter. From geometric
applications such as surface area and volume, to physical applications such as mass and work, to growth and decay models,
definite integrals are a powerful tool to help us understand and model the world around us.

6.1 | Areas between Curves

Learning Objectives
6.1.1 Determine the area of a region between two curves by integrating with respect to the
independent variable.
6.1.2 Find the area of a compound region.
6.1.3 Determine the area of a region between two curves by integrating with respect to the
dependent variable.

In Introduction to Integration, we developed the concept of the definite integral to calculate the area below a curve on
a given interval. In this section, we expand that idea to calculate the area of more complex regions. We start by finding the
area between two curves that are functions of beginning with the simple case in which one function value is always
greater than the other. We then look at cases when the graphs of the functions cross. Last, we consider how to calculate the
area between two curves that are functions of

Area of a Region between Two Curves
Let and be continuous functions over an interval such that on We want to find the

area between the graphs of the functions, as shown in the following figure.

Figure 6.2 The area between the graphs of two functions,
and on the interval

As we did before, we are going to partition the interval on the and approximate the area between the graphs
of the functions with rectangles. So, for let be a regular partition of Then, for

choose a point and on each interval construct a rectangle that extends

vertically from to Figure 6.3(a) shows the rectangles when is selected to be the left endpoint of the

interval and Figure 6.3(b) shows a representative rectangle in detail.

Use this calculator (http://www.openstax.org/l/20_CurveCalc) to learn more about the areas between two
curves.
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Figure 6.3 (a)We can approximate the area between the
graphs of two functions, and with rectangles. (b)

The area of a typical rectangle goes from one curve to the other.

The height of each individual rectangle is and the width of each rectangle is Adding the areas of all

the rectangles, we see that the area between the curves is approximated by

This is a Riemann sum, so we take the limit as and we get

These findings are summarized in the following theorem.

Theorem 6.1: Finding the Area between Two Curves

Let and be continuous functions such that over an interval Let denote the region

bounded above by the graph of below by the graph of and on the left and right by the lines and

respectively. Then, the area of is given by

(6.1)

We apply this theorem in the following example.

Example 6.1

Finding the Area of a Region between Two Curves 1

If R is the region bounded above by the graph of the function and below by the graph of the

function over the interval find the area of region

Solution
The region is depicted in the following figure.
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6.1

Figure 6.4 A region between two curves is shown where one
curve is always greater than the other.

We have

The area of the region is

If is the region bounded by the graphs of the functions and over the

interval find the area of region

In Example 6.1, we defined the interval of interest as part of the problem statement. Quite often, though, we want to define
our interval of interest based on where the graphs of the two functions intersect. This is illustrated in the following example.

Example 6.2

Finding the Area of a Region between Two Curves 2

If is the region bounded above by the graph of the function and below by the graph of the

function find the area of region
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6.2

Solution
The region is depicted in the following figure.

Figure 6.5 This graph shows the region below the graph of
and above the graph of

We first need to compute where the graphs of the functions intersect. Setting we get

The graphs of the functions intersect when or so we want to integrate from to Since
for we obtain

The area of the region is units2.

If R is the region bounded above by the graph of the function and below by the graph of the

function find the area of region
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Areas of Compound Regions
So far, we have required over the entire interval of interest, but what if we want to look at regions bounded by

the graphs of functions that cross one another? In that case, we modify the process we just developed by using the absolute
value function.

Theorem 6.2: Finding the Area of a Region between Curves That Cross

Let and be continuous functions over an interval Let denote the region between the graphs of

and and be bounded on the left and right by the lines and respectively. Then, the area of

is given by

In practice, applying this theorem requires us to break up the interval and evaluate several integrals, depending on
which of the function values is greater over a given part of the interval. We study this process in the following example.

Example 6.3

Finding the Area of a Region Bounded by Functions That Cross

If R is the region between the graphs of the functions and over the interval

find the area of region

Solution
The region is depicted in the following figure.

Figure 6.6 The region between two curves can be broken into
two sub-regions.

The graphs of the functions intersect at For so

On the other hand, for so
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6.3

Then

The area of the region is units2.

If R is the region between the graphs of the functions and over the interval

find the area of region

Example 6.4

Finding the Area of a Complex Region

Consider the region depicted in Figure 6.7. Find the area of

Figure 6.7 Two integrals are required to calculate the area of
this region.

Solution
As with Example 6.3, we need to divide the interval into two pieces. The graphs of the functions intersect at

(set and solve for x), so we evaluate two separate integrals: one over the interval and

one over the interval

Over the interval the region is bounded above by and below by the x-axis, so we have

Over the interval the region is bounded above by and below by the so we have
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6.4

Adding these areas together, we obtain

The area of the region is units2.

Consider the region depicted in the following figure. Find the area of

Regions Defined with Respect to y
In Example 6.4, we had to evaluate two separate integrals to calculate the area of the region. However, there is another
approach that requires only one integral. What if we treat the curves as functions of instead of as functions of

Review Figure 6.7. Note that the left graph, shown in red, is represented by the function We could just

as easily solve this for and represent the curve by the function (Note that is also a valid

representation of the function as a function of However, based on the graph, it is clear we are interested

in the positive square root.) Similarly, the right graph is represented by the function but could just as

easily be represented by the function When the graphs are represented as functions of we see the

region is bounded on the left by the graph of one function and on the right by the graph of the other function. Therefore, if
we integrate with respect to we need to evaluate one integral only. Let’s develop a formula for this type of integration.

Let and be continuous functions over an interval such that for all We want to

find the area between the graphs of the functions, as shown in the following figure.

Figure 6.8 We can find the area between the graphs of two
functions, and
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This time, we are going to partition the interval on the and use horizontal rectangles to approximate the area between

the functions. So, for let be a regular partition of Then, for choose

a point then over each interval construct a rectangle that extends horizontally from

to Figure 6.9(a) shows the rectangles when is selected to be the lower endpoint of the interval and

Figure 6.9(b) shows a representative rectangle in detail.

Figure 6.9 (a) Approximating the area between the graphs of
two functions, and with rectangles. (b) The area of

a typical rectangle.

The height of each individual rectangle is and the width of each rectangle is Therefore, the area

between the curves is approximately

This is a Riemann sum, so we take the limit as obtaining

These findings are summarized in the following theorem.

Theorem 6.3: Finding the Area between Two Curves, Integrating along the y-axis

Let and be continuous functions such that for all Let denote the region bounded

on the right by the graph of on the left by the graph of and above and below by the lines and

respectively. Then, the area of is given by

(6.2)

Example 6.5

Integrating with Respect to y
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6.5

Let’s revisit Example 6.4, only this time let’s integrate with respect to Let be the region depicted in

Figure 6.10. Find the area of by integrating with respect to

Figure 6.10 The area of region can be calculated using
one integral only when the curves are treated as functions of

Solution
We must first express the graphs as functions of As we saw at the beginning of this section, the curve on

the left can be represented by the function and the curve on the right can be represented by the

function

Now we have to determine the limits of integration. The region is bounded below by the x-axis, so the lower limit
of integration is The upper limit of integration is determined by the point where the two graphs intersect,

which is the point so the upper limit of integration is Thus, we have

Calculating the area of the region, we get

The area of the region is units2.

Let’s revisit the checkpoint associated with Example 6.4, only this time, let’s integrate with respect to
Let be the region depicted in the following figure. Find the area of by integrating with respect to
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6.1 EXERCISES
For the following exercises, determine the area of the
region between the two curves in the given figure by
integrating over the

1.

2.

For the following exercises, split the region between the
two curves into two smaller regions, then determine the
area by integrating over the Note that you will
have two integrals to solve.

3. and

4. and for

For the following exercises, determine the area of the
region between the two curves by integrating over the

5.

6.

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the

7.

8.

9. and on

10.

11.
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12.

13.

For the following exercises, graph the equations and shade
the area of the region between the curves. If necessary,
break the region into sub-regions to determine its entire
area.

14.

15.

16. and over

17. over

18. over

19. and

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the

20.

21.

22.

23.

24.

25.

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the x-axis or y-axis, whichever
seems more convenient.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

For the following exercises, find the exact area of the
region bounded by the given equations if possible. If you
are unable to determine the intersection points analytically,
use a calculator to approximate the intersection points with
three decimal places and determine the approximate area of
the region.

38. [T]

39. [T]

40. [T]

41. [T]

42. [T]

43. [T]

44. [T]

45. [T]

46. [T]

47. [T]
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48. The largest triangle with a base on the that

fits inside the upper half of the unit circle

is given by and See the following

figure. What is the area inside the semicircle but outside the
triangle?

49. A factory selling cell phones has a marginal cost
function where represents
the number of cell phones, and a marginal revenue function
given by Find the area between the
graphs of these curves and What does this area
represent?

50. An amusement park has a marginal cost function
where represents the number

of tickets sold, and a marginal revenue function given by
Find the total profit generated when

selling tickets. Use a calculator to determine
intersection points, if necessary, to two decimal places.

51. The tortoise versus the hare: The speed of the hare
is given by the sinusoidal function
whereas the speed of the tortoise is

where is time measured in
hours and the speed is measured in miles per hour. Find the
area between the curves from time to the first time
after one hour when the tortoise and hare are traveling at
the same speed. What does it represent? Use a calculator to
determine the intersection points, if necessary, accurate to
three decimal places.

52. The tortoise versus the hare: The speed of the hare
is given by the sinusoidal function

whereas the speed of the

tortoise is where is time measured in hours
and speed is measured in kilometers per hour. If the race is
over in hour, who won the race and by how much? Use a
calculator to determine the intersection points, if necessary,
accurate to three decimal places.

For the following exercises, find the area between the
curves by integrating with respect to and then with
respect to Is one method easier than the other? Do you

obtain the same answer?

53.

54.

55.

For the following exercises, solve using calculus, then
check your answer with geometry.

56. Determine the equations for the sides of the square
that touches the unit circle on all four sides, as seen in the
following figure. Find the area between the perimeter of
this square and the unit circle. Is there another way to solve
this without using calculus?

57. Find the area between the perimeter of the unit circle
and the triangle created from and

as seen in the following figure. Is there a way

to solve this without using calculus?
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6.2 | Determining Volumes by Slicing

Learning Objectives
6.2.1 Determine the volume of a solid by integrating a cross-section (the slicing method).
6.2.2 Find the volume of a solid of revolution using the disk method.
6.2.3 Find the volume of a solid of revolution with a cavity using the washer method.

In the preceding section, we used definite integrals to find the area between two curves. In this section, we use definite
integrals to find volumes of three-dimensional solids. We consider three approaches—slicing, disks, and washers—for
finding these volumes, depending on the characteristics of the solid.

Volume and the Slicing Method
Just as area is the numerical measure of a two-dimensional region, volume is the numerical measure of a three-dimensional
solid. Most of us have computed volumes of solids by using basic geometric formulas. The volume of a rectangular solid,
for example, can be computed by multiplying length, width, and height: The formulas for the volume of a sphere

a cone and a pyramid have also been introduced. Although some of these

formulas were derived using geometry alone, all these formulas can be obtained by using integration.

We can also calculate the volume of a cylinder. Although most of us think of a cylinder as having a circular base, such as
a soup can or a metal rod, in mathematics the word cylinder has a more general meaning. To discuss cylinders in this more
general context, we first need to define some vocabulary.

We define the cross-section of a solid to be the intersection of a plane with the solid. A cylinder is defined as any solid
that can be generated by translating a plane region along a line perpendicular to the region, called the axis of the cylinder.
Thus, all cross-sections perpendicular to the axis of a cylinder are identical. The solid shown in Figure 6.11 is an example
of a cylinder with a noncircular base. To calculate the volume of a cylinder, then, we simply multiply the area of the cross-
section by the height of the cylinder: In the case of a right circular cylinder (soup can), this becomes

Figure 6.11 Each cross-section of a particular cylinder is identical to the others.

If a solid does not have a constant cross-section (and it is not one of the other basic solids), we may not have a formula for
its volume. In this case, we can use a definite integral to calculate the volume of the solid. We do this by slicing the solid
into pieces, estimating the volume of each slice, and then adding those estimated volumes together. The slices should all be
parallel to one another, and when we put all the slices together, we should get the whole solid. Consider, for example, the
solid S shown in Figure 6.12, extending along the
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Figure 6.12 A solid with a varying cross-section.

We want to divide into slices perpendicular to the As we see later in the chapter, there may be times when we
want to slice the solid in some other direction—say, with slices perpendicular to the y-axis. The decision of which way to
slice the solid is very important. If we make the wrong choice, the computations can get quite messy. Later in the chapter,
we examine some of these situations in detail and look at how to decide which way to slice the solid. For the purposes of
this section, however, we use slices perpendicular to the

Because the cross-sectional area is not constant, we let represent the area of the cross-section at point Now let

be a regular partition of and for let represent the slice of stretching from

The following figure shows the sliced solid with

Figure 6.13 The solid has been divided into three slices
perpendicular to the

Finally, for let be an arbitrary point in Then the volume of slice can be estimated by

Adding these approximations together, we see the volume of the entire solid can be approximated by

By now, we can recognize this as a Riemann sum, and our next step is to take the limit as Then we have
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The technique we have just described is called the slicing method. To apply it, we use the following strategy.

Problem-Solving Strategy: Finding Volumes by the Slicing Method

1. Examine the solid and determine the shape of a cross-section of the solid. It is often helpful to draw a picture
if one is not provided.

2. Determine a formula for the area of the cross-section.

3. Integrate the area formula over the appropriate interval to get the volume.

Recall that in this section, we assume the slices are perpendicular to the Therefore, the area formula is in terms of
x and the limits of integration lie on the However, the problem-solving strategy shown here is valid regardless of
how we choose to slice the solid.

Example 6.6

Deriving the Formula for the Volume of a Pyramid

We know from geometry that the formula for the volume of a pyramid is If the pyramid has a square

base, this becomes where denotes the length of one side of the base. We are going to use the

slicing method to derive this formula.

Solution
We want to apply the slicing method to a pyramid with a square base. To set up the integral, consider the pyramid
shown in Figure 6.14, oriented along the

Figure 6.14 (a) A pyramid with a square base is oriented along the x-axis. (b) A two-dimensional view of the
pyramid is seen from the side.

We first want to determine the shape of a cross-section of the pyramid. We know the base is a square, so the
cross-sections are squares as well (step 1). Now we want to determine a formula for the area of one of these cross-
sectional squares. Looking at Figure 6.14(b), and using a proportion, since these are similar triangles, we have

Therefore, the area of one of the cross-sectional squares is
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6.6

Then we find the volume of the pyramid by integrating from (step

This is the formula we were looking for.

Use the slicing method to derive the formula for the volume of a circular cone.

Solids of Revolution
If a region in a plane is revolved around a line in that plane, the resulting solid is called a solid of revolution, as shown in
the following figure.

Chapter 6 | Applications of Integration 639



Figure 6.15 (a) This is the region that is revolved around the x-axis.
(b) As the region begins to revolve around the axis, it sweeps out a
solid of revolution. (c) This is the solid that results when the
revolution is complete.

Solids of revolution are common in mechanical applications, such as machine parts produced by a lathe. We spend the rest
of this section looking at solids of this type. The next example uses the slicing method to calculate the volume of a solid of
revolution.

Use an online integral calculator (http://www.openstax.org/l/20_IntCalc2) to learn more.
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Example 6.7

Using the Slicing Method to find the Volume of a Solid of Revolution

Use the slicing method to find the volume of the solid of revolution bounded by the graphs of
and rotated about the

Solution
Using the problem-solving strategy, we first sketch the graph of the quadratic function over the interval as
shown in the following figure.

Figure 6.16 A region used to produce a solid of revolution.

Next, revolve the region around the x-axis, as shown in the following figure.

Figure 6.17 Two views, (a) and (b), of the solid of revolution produced by revolving the region
in Figure 6.16 about the
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6.7

Since the solid was formed by revolving the region around the the cross-sections are circles (step 1).
The area of the cross-section, then, is the area of a circle, and the radius of the circle is given by Use the

formula for the area of the circle:

The volume, then, is (step 3)

The volume is

Use the method of slicing to find the volume of the solid of revolution formed by revolving the region
between the graph of the function and the over the interval around the See

the following figure.

The Disk Method
When we use the slicing method with solids of revolution, it is often called the disk method because, for solids of
revolution, the slices used to over approximate the volume of the solid are disks. To see this, consider the solid of revolution
generated by revolving the region between the graph of the function and the over the interval

around the The graph of the function and a representative disk are shown in Figure 6.18(a) and (b). The
region of revolution and the resulting solid are shown in Figure 6.18(c) and (d).
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Figure 6.18 (a) A thin rectangle for approximating the area under a curve. (b) A representative disk formed by
revolving the rectangle about the (c) The region under the curve is revolved about the resulting in
(d) the solid of revolution.

We already used the formal Riemann sum development of the volume formula when we developed the slicing method. We
know that

The only difference with the disk method is that we know the formula for the cross-sectional area ahead of time; it is the
area of a circle. This gives the following rule.

Rule: The Disk Method

Let be continuous and nonnegative. Define as the region bounded above by the graph of below by the
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on the left by the line and on the right by the line Then, the volume of the solid of revolution
formed by revolving around the is given by

(6.3)

The volume of the solid we have been studying (Figure 6.18) is given by

Let’s look at some examples.

Example 6.8

Using the Disk Method to Find the Volume of a Solid of Revolution 1

Use the disk method to find the volume of the solid of revolution generated by rotating the region between the
graph of and the over the interval around the

Solution
The graphs of the function and the solid of revolution are shown in the following figure.

Figure 6.19 (a) The function over the interval (b) The solid of revolution

obtained by revolving the region under the graph of about the

We have
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6.8

The volume is units3.

Use the disk method to find the volume of the solid of revolution generated by rotating the region
between the graph of and the over the interval around the

So far, our examples have all concerned regions revolved around the but we can generate a solid of revolution by
revolving a plane region around any horizontal or vertical line. In the next example, we look at a solid of revolution that has
been generated by revolving a region around the The mechanics of the disk method are nearly the same as when

the is the axis of revolution, but we express the function in terms of and we integrate with respect to y as well.

This is summarized in the following rule.

Rule: The Disk Method for Solids of Revolution around the y-axis

Let be continuous and nonnegative. Define as the region bounded on the right by the graph of on the

left by the below by the line and above by the line Then, the volume of the solid of revolution

formed by revolving around the is given by

(6.4)

The next example shows how this rule works in practice.

Example 6.9

Using the Disk Method to Find the Volume of a Solid of Revolution 2

Let be the region bounded by the graph of and the over the interval

Use the disk method to find the volume of the solid of revolution generated by rotating around the

Solution
Figure 6.20 shows the function and a representative disk that can be used to estimate the volume. Notice that
since we are revolving the function around the the disks are horizontal, rather than vertical.
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Figure 6.20 (a) Shown is a thin rectangle between the curve of the function

and the (b) The rectangle forms a representative disk after revolution around the

The region to be revolved and the full solid of revolution are depicted in the following figure.

Figure 6.21 (a) The region to the left of the function over the interval

(b) The solid of revolution formed by revolving the region about the

To find the volume, we integrate with respect to We obtain

646 Chapter 6 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



6.9

The volume is units3.

Use the disk method to find the volume of the solid of revolution generated by rotating the region
between the graph of and the over the interval around the

The Washer Method
Some solids of revolution have cavities in the middle; they are not solid all the way to the axis of revolution. Sometimes,
this is just a result of the way the region of revolution is shaped with respect to the axis of revolution. In other cases, cavities
arise when the region of revolution is defined as the region between the graphs of two functions. A third way this can happen
is when an axis of revolution other than the or is selected.

When the solid of revolution has a cavity in the middle, the slices used to approximate the volume are not disks, but washers
(disks with holes in the center). For example, consider the region bounded above by the graph of the function

and below by the graph of the function over the interval When this region is revolved around the

the result is a solid with a cavity in the middle, and the slices are washers. The graph of the function and a representative
washer are shown in Figure 6.22(a) and (b). The region of revolution and the resulting solid are shown in Figure 6.22(c)
and (d).
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Figure 6.22 (a) A thin rectangle in the region between two curves. (b) A
representative disk formed by revolving the rectangle about the (c) The region
between the curves over the given interval. (d) The resulting solid of revolution.

The cross-sectional area, then, is the area of the outer circle less the area of the inner circle. In this case,

Then the volume of the solid is

Generalizing this process gives the washer method.

Rule: The Washer Method

Suppose and are continuous, nonnegative functions such that over Let denote the

region bounded above by the graph of below by the graph of on the left by the line and on
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6.10

the right by the line Then, the volume of the solid of revolution formed by revolving around the is
given by

(6.5)

Example 6.10

Using the Washer Method

Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of

and below by the graph of over the interval around the

Solution
The graphs of the functions and the solid of revolution are shown in the following figure.

Figure 6.23 (a) The region between the graphs of the functions and

over the interval (b) Revolving the region about the generates

a solid of revolution with a cavity in the middle.

We have

Find the volume of a solid of revolution formed by revolving the region bounded by the graphs of
and over the interval around the

As with the disk method, we can also apply the washer method to solids of revolution that result from revolving a region
around the y-axis. In this case, the following rule applies.
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Rule: The Washer Method for Solids of Revolution around the y-axis

Suppose and are continuous, nonnegative functions such that for Let denote

the region bounded on the right by the graph of on the left by the graph of below by the line

and above by the line Then, the volume of the solid of revolution formed by revolving around the

is given by

Rather than looking at an example of the washer method with the as the axis of revolution, we now consider an

example in which the axis of revolution is a line other than one of the two coordinate axes. The same general method
applies, but you may have to visualize just how to describe the cross-sectional area of the volume.

Example 6.11

The Washer Method with a Different Axis of Revolution

Find the volume of a solid of revolution formed by revolving the region bounded above by and

below by the over the interval around the line

Solution
The graph of the region and the solid of revolution are shown in the following figure.

Figure 6.24 (a) The region between the graph of the function and the

over the interval (b) Revolving the region about the line generates a solid of

revolution with a cylindrical hole through its middle.

We can’t apply the volume formula to this problem directly because the axis of revolution is not one of the
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6.11

coordinate axes. However, we still know that the area of the cross-section is the area of the outer circle less the
area of the inner circle. Looking at the graph of the function, we see the radius of the outer circle is given by

which simplifies to

The radius of the inner circle is Therefore, we have

Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of
and below by the over the interval around the line
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6.2 EXERCISES
58. Derive the formula for the volume of a sphere using
the slicing method.

59. Use the slicing method to derive the formula for the
volume of a cone.

60. Use the slicing method to derive the formula for the
volume of a tetrahedron with side length

61. Use the disk method to derive the formula for the
volume of a trapezoidal cylinder.

62. Explain when you would use the disk method versus
the washer method. When are they interchangeable?

For the following exercises, draw a typical slice and find
the volume using the slicing method for the given volume.

63. A pyramid with height 6 units and square base of side
2 units, as pictured here.

64. A pyramid with height 4 units and a rectangular base
with length 2 units and width 3 units, as pictured here.

65. A tetrahedron with a base side of 4 units, as seen here.

66. A pyramid with height 5 units, and an isosceles
triangular base with lengths of 6 units and 8 units, as seen
here.

67. A cone of radius and height has a smaller cone of
radius and height removed from the top, as seen
here. The resulting solid is called a frustum.

For the following exercises, draw an outline of the solid and
find the volume using the slicing method.

68. The base is a circle of radius The slices
perpendicular to the base are squares.

69. The base is a triangle with vertices
and Slices perpendicular to the x-axis are
semicircles.

70. The base is the region under the parabola

in the first quadrant. Slices perpendicular to the xy-plane
are squares.

71. The base is the region under the parabola

and above the Slices perpendicular to the

are squares.
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72. The base is the region enclosed by and

Slices perpendicular to the x-axis are right isosceles

triangles. The intersection of one of these slices and the
base is the leg of the triangle.

73. The base is the area between and

Slices perpendicular to the x-axis are semicircles.

For the following exercises, draw the region bounded by
the curves. Then, use the disk method to find the volume
when the region is rotated around the x-axis.

74.

75.

76.

77.

78.

79.

80.

81.

For the following exercises, draw the region bounded by
the curves. Then, find the volume when the region is
rotated around the y-axis.

82.

83.

84.

85.

86.

87.

88.

89.

For the following exercises, draw the region bounded by
the curves. Then, find the volume when the region is

rotated around the x-axis.

90.

91.

92.

93.

94. [T]

95.

96.

97.

For the following exercises, draw the region bounded by
the curves. Then, use the washer method to find the volume
when the region is revolved around the y-axis.

98.

99.

100.

101.

102.
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103. Yogurt containers can be shaped like frustums.
Rotate the line around the y-axis to find the

volume between

104. Rotate the ellipse around the

x-axis to approximate the volume of a football, as seen
here.

105. Rotate the ellipse around the

y-axis to approximate the volume of a football.

106. A better approximation of the volume of a football
is given by the solid that comes from rotating

around the x-axis from to What is the
volume of this football approximation, as seen here?

107. What is the volume of the Bundt cake that comes
from rotating around the y-axis from to

For the following exercises, find the volume of the solid
described.
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108. The base is the region between and

Slices perpendicular to the x-axis are semicircles.

109. The base is the region enclosed by the generic ellipse
Slices perpendicular to the x-axis

are semicircles.

110. Bore a hole of radius down the axis of a right cone
and through the base of radius as seen here.

111. Find the volume common to two spheres of radius
with centers that are apart, as shown here.

112. Find the volume of a spherical cap of height and
radius where as seen here.

113. Find the volume of a sphere of radius with a cap
of height removed from the top, as seen here.
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6.3 | Volumes of Revolution: Cylindrical Shells

Learning Objectives
6.3.1 Calculate the volume of a solid of revolution by using the method of cylindrical shells.
6.3.2 Compare the different methods for calculating a volume of revolution.

In this section, we examine the method of cylindrical shells, the final method for finding the volume of a solid of revolution.
We can use this method on the same kinds of solids as the disk method or the washer method; however, with the disk and
washer methods, we integrate along the coordinate axis parallel to the axis of revolution. With the method of cylindrical
shells, we integrate along the coordinate axis perpendicular to the axis of revolution. The ability to choose which variable
of integration we want to use can be a significant advantage with more complicated functions. Also, the specific geometry
of the solid sometimes makes the method of using cylindrical shells more appealing than using the washer method. In the
last part of this section, we review all the methods for finding volume that we have studied and lay out some guidelines to
help you determine which method to use in a given situation.

The Method of Cylindrical Shells
Again, we are working with a solid of revolution. As before, we define a region bounded above by the graph of a
function below by the and on the left and right by the lines and respectively, as shown

in Figure 6.25(a). We then revolve this region around the y-axis, as shown in Figure 6.25(b). Note that this is different
from what we have done before. Previously, regions defined in terms of functions of were revolved around the
or a line parallel to it.

Figure 6.25 (a) A region bounded by the graph of a function of (b) The solid of revolution formed when the
region is revolved around the

As we have done many times before, partition the interval using a regular partition, and,

for choose a point Then, construct a rectangle over the interval of height

and width A representative rectangle is shown in Figure 6.26(a). When that rectangle is revolved around the

y-axis, instead of a disk or a washer, we get a cylindrical shell, as shown in the following figure.
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Figure 6.26 (a) A representative rectangle. (b) When this rectangle is revolved around the the result is a cylindrical

shell. (c) When we put all the shells together, we get an approximation of the original solid.

To calculate the volume of this shell, consider Figure 6.27.

Figure 6.27 Calculating the volume of the shell.

The shell is a cylinder, so its volume is the cross-sectional area multiplied by the height of the cylinder. The cross-sections
are annuli (ring-shaped regions—essentially, circles with a hole in the center), with outer radius and inner radius

Thus, the cross-sectional area is The height of the cylinder is Then the volume of the shell is

Note that so we have
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Furthermore, is both the midpoint of the interval and the average radius of the shell, and we can

approximate this by We then have

Another way to think of this is to think of making a vertical cut in the shell and then opening it up to form a flat plate
(Figure 6.28).

Figure 6.28 (a) Make a vertical cut in a representative shell. (b) Open the shell up to form a flat plate.

In reality, the outer radius of the shell is greater than the inner radius, and hence the back edge of the plate would be slightly
longer than the front edge of the plate. However, we can approximate the flattened shell by a flat plate of height

width and thickness (Figure 6.28). The volume of the shell, then, is approximately the volume of the flat

plate. Multiplying the height, width, and depth of the plate, we get

which is the same formula we had before.

To calculate the volume of the entire solid, we then add the volumes of all the shells and obtain

Here we have another Riemann sum, this time for the function Taking the limit as gives us

This leads to the following rule for the method of cylindrical shells.

Rule: The Method of Cylindrical Shells

Let be continuous and nonnegative. Define as the region bounded above by the graph of below by the

on the left by the line and on the right by the line Then the volume of the solid of revolution
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6.12

formed by revolving around the y-axis is given by

(6.6)

Now let’s consider an example.

Example 6.12

The Method of Cylindrical Shells 1

Define as the region bounded above by the graph of and below by the over the interval

Find the volume of the solid of revolution formed by revolving around the

Solution
First we must graph the region and the associated solid of revolution, as shown in the following figure.

Figure 6.29 (a) The region under the graph of over the

interval (b) The solid of revolution generated by revolving about

the

Then the volume of the solid is given by

Define R as the region bounded above by the graph of and below by the x-axis over the

interval Find the volume of the solid of revolution formed by revolving around the
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6.13

Example 6.13

The Method of Cylindrical Shells 2

Define R as the region bounded above by the graph of and below by the over the interval

Find the volume of the solid of revolution formed by revolving around the

Solution
First graph the region and the associated solid of revolution, as shown in the following figure.

Figure 6.30 (a) The region under the graph of over

the interval (b) The volume of revolution obtained by revolving

about the

Then the volume of the solid is given by

Define as the region bounded above by the graph of and below by the over

the interval Find the volume of the solid of revolution formed by revolving around the

As with the disk method and the washer method, we can use the method of cylindrical shells with solids of revolution,
revolved around the when we want to integrate with respect to The analogous rule for this type of solid is given

here.

Rule: The Method of Cylindrical Shells for Solids of Revolution around the x-axis

Let be continuous and nonnegative. Define as the region bounded on the right by the graph of on

the left by the below by the line and above by the line Then, the volume of the solid of
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6.14

revolution formed by revolving around the is given by

Example 6.14

The Method of Cylindrical Shells for a Solid Revolved around the x-axis

Define as the region bounded on the right by the graph of and on the left by the for

Find the volume of the solid of revolution formed by revolving around the x-axis.

Solution
First, we need to graph the region and the associated solid of revolution, as shown in the following figure.

Figure 6.31 (a) The region to the left of the function over the interval

(b) The solid of revolution generated by revolving around the

Label the shaded region Then the volume of the solid is given by

Define as the region bounded on the right by the graph of and on the left by the

for Find the volume of the solid of revolution formed by revolving around the
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For the next example, we look at a solid of revolution for which the graph of a function is revolved around a line other than
one of the two coordinate axes. To set this up, we need to revisit the development of the method of cylindrical shells. Recall
that we found the volume of one of the shells to be given by

This was based on a shell with an outer radius of and an inner radius of If, however, we rotate the region around

a line other than the we have a different outer and inner radius. Suppose, for example, that we rotate the region

around the line where is some positive constant. Then, the outer radius of the shell is and the inner

radius of the shell is Substituting these terms into the expression for volume, we see that when a plane region is

rotated around the line the volume of a shell is given by

As before, we notice that is the midpoint of the interval and can be approximated by Then,

the approximate volume of the shell is

The remainder of the development proceeds as before, and we see that

We could also rotate the region around other horizontal or vertical lines, such as a vertical line in the right half plane. In
each case, the volume formula must be adjusted accordingly. Specifically, the in the integral must be replaced with
an expression representing the radius of a shell. To see how this works, consider the following example.

Example 6.15

A Region of Revolution Revolved around a Line

Define as the region bounded above by the graph of and below by the over the interval

Find the volume of the solid of revolution formed by revolving around the line

Solution
First, graph the region and the associated solid of revolution, as shown in the following figure.
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6.15

Figure 6.32 (a) The region between the graph of and the over the interval (b) The

solid of revolution generated by revolving around the line

Note that the radius of a shell is given by Then the volume of the solid is given by

Define as the region bounded above by the graph of and below by the over the

interval Find the volume of the solid of revolution formed by revolving around the line

For our final example in this section, let’s look at the volume of a solid of revolution for which the region of revolution is
bounded by the graphs of two functions.

Example 6.16

A Region of Revolution Bounded by the Graphs of Two Functions

Define as the region bounded above by the graph of the function and below by the graph of the

function over the interval Find the volume of the solid of revolution generated by revolving

around the
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Solution
First, graph the region and the associated solid of revolution, as shown in the following figure.

Figure 6.33 (a) The region between the graph of and the graph of over the interval (b)

The solid of revolution generated by revolving around the

Note that the axis of revolution is the so the radius of a shell is given simply by We don’t need to

make any adjustments to the x-term of our integrand. The height of a shell, though, is given by so

in this case we need to adjust the term of the integrand. Then the volume of the solid is given by

Define as the region bounded above by the graph of and below by the graph of

over the interval Find the volume of the solid of revolution formed by revolving around the

Which Method Should We Use?
We have studied several methods for finding the volume of a solid of revolution, but how do we know which method to use?
It often comes down to a choice of which integral is easiest to evaluate. Figure 6.34 describes the different approaches
for solids of revolution around the It’s up to you to develop the analogous table for solids of revolution around the
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Figure 6.34

Let’s take a look at a couple of additional problems and decide on the best approach to take for solving them.

Example 6.17

Selecting the Best Method

For each of the following problems, select the best method to find the volume of a solid of revolution generated
by revolving the given region around the and set up the integral to find the volume (do not evaluate the
integral).

a. The region bounded by the graphs of and the

b. The region bounded by the graphs of and the

Solution
a. First, sketch the region and the solid of revolution as shown.
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Figure 6.35 (a) The region bounded by two lines and the (b) The solid of
revolution generated by revolving about the

Looking at the region, if we want to integrate with respect to we would have to break the integral
into two pieces, because we have different functions bounding the region over and In this
case, using the disk method, we would have

If we used the shell method instead, we would use functions of to represent the curves, producing

Neither of these integrals is particularly onerous, but since the shell method requires only one integral,
and the integrand requires less simplification, we should probably go with the shell method in this case.

b. First, sketch the region and the solid of revolution as shown.
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6.17

Figure 6.36 (a) The region between the curve and the (b) The solid of
revolution generated by revolving about the

Looking at the region, it would be problematic to define a horizontal rectangle; the region is bounded on
the left and right by the same function. Therefore, we can dismiss the method of shells. The solid has no
cavity in the middle, so we can use the method of disks. Then

Select the best method to find the volume of a solid of revolution generated by revolving the given
region around the and set up the integral to find the volume (do not evaluate the integral): the region

bounded by the graphs of and
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6.3 EXERCISES
For the following exercise, find the volume generated when
the region between the two curves is rotated around the
given axis. Use both the shell method and the washer
method. Use technology to graph the functions and draw a
typical slice by hand.

114. [T] Over the curve of and

rotated around the

115. [T] Under the curve of

rotated around the

116. [T] Over the curve of

rotated around the

117. [T] Under the curve of

rotated around the

118. [T] Under the curve of

rotated around the

119. [T] Under the curve of

rotated around the

For the following exercises, use shells to find the volumes
of the given solids. Note that the rotated regions lie between
the curve and the and are rotated around the

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

For the following exercises, use shells to find the volume
generated by rotating the regions between the given curve
and around the

130. and the x-axis

131. and the x-axis

132. and the x-axis

133. and the x-axis

134.

135. and the y-axis

136.

137. and the y-axis

138. and the x-axis

139.

For the following exercises, find the volume generated
when the region between the curves is rotated around the
given axis.

140. rotated around

the

141. rotated around the

142. rotated around the

143. rotated around the line

144. rotated around the

line

145. rotated around the
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146. rotated around the line

147. rotated around

the

148. rotated around the line

149. [T] Left of right of around

the

For the following exercises, use technology to graph the
region. Determine which method you think would be
easiest to use to calculate the volume generated when the
function is rotated around the specified axis. Then, use your
chosen method to find the volume.

150. [T] and rotated around the

151. [T]

rotated around the

152. [T] rotated around

the

153. [T] rotated around

the

154. [T] rotated around

the

155. [T] rotated around

the

156. [T] and rotated around the

157. [T] rotated

around the

For the following exercises, use the method of shells to
approximate the volumes of some common objects, which
are pictured in accompanying figures.

158. Use the method of shells to find the volume of a
sphere of radius

159. Use the method of shells to find the volume of a cone
with radius and height

160. Use the method of shells to find the volume of an
ellipse rotated around the

161. Use the method of shells to find the volume of a
cylinder with radius and height

162. Use the method of shells to find the volume of the
donut created when the circle is rotated

around the line
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163. Consider the region enclosed by the graphs of
and

What is the volume of the solid generated when this region
is rotated around the Assume that the function is

defined over the interval

164. Consider the function which decreases

from to Set up the integrals for

determining the volume, using both the shell method and
the disk method, of the solid generated when this region,
with and is rotated around the

Prove that both methods approximate the same volume.
Which method is easier to apply? (Hint: Since is one-

to-one, there exists an inverse
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6.4 | Arc Length of a Curve and Surface Area

Learning Objectives
6.4.1 Determine the length of a curve, between two points.

6.4.2 Determine the length of a curve, between two points.

6.4.3 Find the surface area of a solid of revolution.

In this section, we use definite integrals to find the arc length of a curve. We can think of arc length as the distance you
would travel if you were walking along the path of the curve. Many real-world applications involve arc length. If a rocket
is launched along a parabolic path, we might want to know how far the rocket travels. Or, if a curve on a map represents a
road, we might want to know how far we have to drive to reach our destination.

We begin by calculating the arc length of curves defined as functions of then we examine the same process for curves
defined as functions of (The process is identical, with the roles of and reversed.) The techniques we use to find arc

length can be extended to find the surface area of a surface of revolution, and we close the section with an examination of
this concept.

Arc Length of the Curve y = f(x)
In previous applications of integration, we required the function to be integrable, or at most continuous. However,

for calculating arc length we have a more stringent requirement for Here, we require to be differentiable, and

furthermore we require its derivative, to be continuous. Functions like this, which have continuous derivatives, are

called smooth. (This property comes up again in later chapters.)

Let be a smooth function defined over We want to calculate the length of the curve from the point

to the point We start by using line segments to approximate the length of the curve. For

let be a regular partition of Then, for construct a line segment from the point

to the point Although it might seem logical to use either horizontal or vertical line segments,

we want our line segments to approximate the curve as closely as possible. Figure 6.37 depicts this construct for

Figure 6.37 We can approximate the length of a curve by
adding line segments.

To help us find the length of each line segment, we look at the change in vertical distance as well as the change in horizontal
distance over each interval. Because we have used a regular partition, the change in horizontal distance over each interval is
given by The change in vertical distance varies from interval to interval, though, so we use

to represent the change in vertical distance over the interval as shown in Figure 6.38. Note that some (or all)

may be negative.

Chapter 6 | Applications of Integration 671



Figure 6.38 A representative line segment approximates the
curve over the interval

By the Pythagorean theorem, the length of the line segment is We can also write this as

Now, by the Mean Value Theorem, there is a point such that

Then the length of the line segment is given by Adding up the lengths of all

the line segments, we get

This is a Riemann sum. Taking the limit as we have

We summarize these findings in the following theorem.

Theorem 6.4: Arc Length for y = f(x)

Let be a smooth function over the interval Then the arc length of the portion of the graph of from

the point to the point is given by

(6.7)

Note that we are integrating an expression involving so we need to be sure is integrable. This is why we

require to be smooth. The following example shows how to apply the theorem.

Example 6.18

Calculating the Arc Length of a Function of x

Let Calculate the arc length of the graph of over the interval Round the answer to

three decimal places.
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6.18

6.19

Solution

We have so Then, the arc length is

Substitute Then, When then and when then Thus,

Let Calculate the arc length of the graph of over the interval Round the

answer to three decimal places.

Although it is nice to have a formula for calculating arc length, this particular theorem can generate expressions that
are difficult to integrate. We study some techniques for integration in Introduction to Techniques of Integration
(http://cnx.org/content/m53654/latest/) . In some cases, we may have to use a computer or calculator to approximate
the value of the integral.

Example 6.19

Using a Computer or Calculator to Determine the Arc Length of a Function of x

Let Calculate the arc length of the graph of over the interval

Solution

We have so Then the arc length is given by

Using a computer to approximate the value of this integral, we get

Let Calculate the arc length of the graph of over the interval Use a

computer or calculator to approximate the value of the integral.
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Arc Length of the Curve x = g(y)
We have just seen how to approximate the length of a curve with line segments. If we want to find the arc length of the
graph of a function of we can repeat the same process, except we partition the instead of the Figure
6.39 shows a representative line segment.

Figure 6.39 A representative line segment over the interval

Then the length of the line segment is which can also be written as If we now

follow the same development we did earlier, we get a formula for arc length of a function

Theorem 6.5: Arc Length for x = g(y)

Let be a smooth function over an interval Then, the arc length of the graph of from the point

to the point is given by

(6.8)

Example 6.20

Calculating the Arc Length of a Function of y

Let Calculate the arc length of the graph of over the interval

Solution

We have so Then the arc length is

Using a computer to approximate the value of this integral, we obtain
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6.20 Let Calculate the arc length of the graph of over the interval Use a computer

or calculator to approximate the value of the integral.

Area of a Surface of Revolution
The concepts we used to find the arc length of a curve can be extended to find the surface area of a surface of revolution.
Surface area is the total area of the outer layer of an object. For objects such as cubes or bricks, the surface area of the
object is the sum of the areas of all of its faces. For curved surfaces, the situation is a little more complex. Let be a

nonnegative smooth function over the interval We wish to find the surface area of the surface of revolution created
by revolving the graph of around the as shown in the following figure.

Figure 6.40 (a) A curve representing the function (b) The surface of revolution

formed by revolving the graph of around the

As we have done many times before, we are going to partition the interval and approximate the surface area by
calculating the surface area of simpler shapes. We start by using line segments to approximate the curve, as we did earlier
in this section. For let be a regular partition of Then, for construct a

line segment from the point to the point Now, revolve these line segments around the

to generate an approximation of the surface of revolution as shown in the following figure.

Figure 6.41 (a) Approximating with line segments. (b) The surface of revolution

formed by revolving the line segments around the

Notice that when each line segment is revolved around the axis, it produces a band. These bands are actually pieces of cones
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(think of an ice cream cone with the pointy end cut off). A piece of a cone like this is called a frustum of a cone.

To find the surface area of the band, we need to find the lateral surface area, of the frustum (the area of just the slanted
outside surface of the frustum, not including the areas of the top or bottom faces). Let and be the radii of the wide

end and the narrow end of the frustum, respectively, and let be the slant height of the frustum as shown in the following
figure.

Figure 6.42 A frustum of a cone can approximate a small part
of surface area.

We know the lateral surface area of a cone is given by

where is the radius of the base of the cone and is the slant height (see the following figure).

Figure 6.43 The lateral surface area of the cone is given by

Since a frustum can be thought of as a piece of a cone, the lateral surface area of the frustum is given by the lateral surface
area of the whole cone less the lateral surface area of the smaller cone (the pointy tip) that was cut off (see the following
figure).
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Figure 6.44 Calculating the lateral surface area of a frustum
of a cone.

The cross-sections of the small cone and the large cone are similar triangles, so we see that

Solving for we get

Then the lateral surface area (SA) of the frustum is

Let’s now use this formula to calculate the surface area of each of the bands formed by revolving the line segments around
the A representative band is shown in the following figure.
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Figure 6.45 A representative band used for determining
surface area.

Note that the slant height of this frustum is just the length of the line segment used to generate it. So, applying the surface
area formula, we have

Now, as we did in the development of the arc length formula, we apply the Mean Value Theorem to select

such that This gives us

Furthermore, since is continuous, by the Intermediate Value Theorem, there is a point such that

so we get

Then the approximate surface area of the whole surface of revolution is given by

This almost looks like a Riemann sum, except we have functions evaluated at two different points, and over

the interval Although we do not examine the details here, it turns out that because is smooth, if we let

the limit works the same as a Riemann sum even with the two different evaluation points. This makes sense

intuitively. Both and are in the interval so it makes sense that as both and

approach Those of you who are interested in the details should consult an advanced calculus text.

Taking the limit as we get

As with arc length, we can conduct a similar development for functions of to get a formula for the surface area of surfaces

of revolution about the These findings are summarized in the following theorem.
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Theorem 6.6: Surface Area of a Surface of Revolution

Let be a nonnegative smooth function over the interval Then, the surface area of the surface of revolution

formed by revolving the graph of around the x-axis is given by

(6.9)

Similarly, let be a nonnegative smooth function over the interval Then, the surface area of the surface of

revolution formed by revolving the graph of around the is given by

Example 6.21

Calculating the Surface Area of a Surface of Revolution 1

Let over the interval Find the surface area of the surface generated by revolving the graph of

around the Round the answer to three decimal places.

Solution
The graph of and the surface of rotation are shown in the following figure.

Figure 6.46 (a) The graph of (b) The surface of revolution.

We have Then, and Then,
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Let Then, When and when This gives us

Let over the interval Find the surface area of the surface generated by

revolving the graph of around the Round the answer to three decimal places.

Example 6.22

Calculating the Surface Area of a Surface of Revolution 2

Let Consider the portion of the curve where Find the surface area of the surface

generated by revolving the graph of around the

Solution
Notice that we are revolving the curve around the and the interval is in terms of so we want to

rewrite the function as a function of y. We get The graph of and the surface of rotation

are shown in the following figure.
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Figure 6.47 (a) The graph of (b) The surface of revolution.

We have so and Then

Let Then When and when Then

Let over the interval Find the surface area of the surface generated by

revolving the graph of around the
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6.4 EXERCISES
For the following exercises, find the length of the functions
over the given interval.

165.

166.

167.

168. Pick an arbitrary linear function over any

interval of your choice Determine the length of

the function and then prove the length is correct by using
geometry.

169. Find the surface area of the volume generated when
the curve revolves around the from

to as seen here.

170. Find the surface area of the volume generated when
the curve revolves around the from

to

For the following exercises, find the lengths of the
functions of over the given interval. If you cannot

evaluate the integral exactly, use technology to
approximate it.

171. from

172. from

173. from

174. from to

175. [T] on to

176. from

177. from

178. from

179. from

180. [T] on

For the following exercises, find the lengths of the
functions of over the given interval. If you cannot

evaluate the integral exactly, use technology to
approximate it.

181. from to

182. from

183. from to

184. [T] from to

185. from

186. from to

187. [T] from to

188. [T] from to
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189. [T] from

190. [T] on to

For the following exercises, find the surface area of the
volume generated when the following curves revolve
around the If you cannot evaluate the integral
exactly, use your calculator to approximate it.

191. from to

192. from to

193. from

194. [T] from

195. from

196. from

197. from

198. [T] from

For the following exercises, find the surface area of the
volume generated when the following curves revolve
around the If you cannot evaluate the integral

exactly, use your calculator to approximate it.

199. from

200. from

201. from

202. [T] from to

203. from

204. [T] from to

205. [T] from to

206. [T] from to

207. The base of a lamp is constructed by revolving a

quarter circle around the from

to as seen here. Create an integral for the
surface area of this curve and compute it.

208. A light bulb is a sphere with radius in. with the
bottom sliced off to fit exactly onto a cylinder of radius

in. and length in., as seen here. The sphere is
cut off at the bottom to fit exactly onto the cylinder, so
the radius of the cut is in. Find the surface area (not
including the top or bottom of the cylinder).

209. [T] A lampshade is constructed by rotating

around the from to as seen here.

Determine how much material you would need to construct
this lampshade—that is, the surface area—accurate to four
decimal places.

210. [T] An anchor drags behind a boat according to
the function where represents the

depth beneath the boat and is the horizontal distance of
the anchor from the back of the boat. If the anchor is ft
below the boat, how much rope do you have to pull to reach
the anchor? Round your answer to three decimal places.
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211. [T] You are building a bridge that will span
ft. You intend to add decorative rope in the shape of

where is the distance in feet from

one end of the bridge. Find out how much rope you need to
buy, rounded to the nearest foot.

For the following exercises, find the exact arc length for the
following problems over the given interval.

212. from to (Hint:

Recall trigonometric identities.)

213. Draw graphs of and

For as increases, formulate a prediction on

the arc length from to Now, compute the
lengths of these three functions and determine whether your
prediction is correct.

214. Compare the lengths of the parabola and the

line from as increases. What

do you notice?

215. Solve for the length of from

Show that from to

is twice as long. Graph both functions and explain
why this is so.

216. [T] Which is longer between and
the hyperbola or the graph of

217. Explain why the surface area is infinite when
is rotated around the for

but the volume is finite.
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6.5 | Physical Applications

Learning Objectives
6.5.1 Determine the mass of a one-dimensional object from its linear density function.
6.5.2 Determine the mass of a two-dimensional circular object from its radial density function.
6.5.3 Calculate the work done by a variable force acting along a line.
6.5.4 Calculate the work done in pumping a liquid from one height to another.
6.5.5 Find the hydrostatic force against a submerged vertical plate.

In this section, we examine some physical applications of integration. Let’s begin with a look at calculating mass from a
density function. We then turn our attention to work, and close the section with a study of hydrostatic force.

Mass and Density
We can use integration to develop a formula for calculating mass based on a density function. First we consider a thin rod
or wire. Orient the rod so it aligns with the with the left end of the rod at and the right end of the rod at

(Figure 6.48). Note that although we depict the rod with some thickness in the figures, for mathematical purposes
we assume the rod is thin enough to be treated as a one-dimensional object.

Figure 6.48 We can calculate the mass of a thin rod oriented
along the by integrating its density function.

If the rod has constant density given in terms of mass per unit length, then the mass of the rod is just the product of the

density and the length of the rod: If the density of the rod is not constant, however, the problem becomes a little

more challenging. When the density of the rod varies from point to point, we use a linear density function, to denote

the density of the rod at any point, Let be an integrable linear density function. Now, for let

be a regular partition of the interval and for choose an arbitrary point

Figure 6.49 shows a representative segment of the rod.

Figure 6.49 A representative segment of the rod.

The mass of the segment of the rod from to is approximated by

Adding the masses of all the segments gives us an approximation for the mass of the entire rod:
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This is a Riemann sum. Taking the limit as we get an expression for the exact mass of the rod:

We state this result in the following theorem.

Theorem 6.7: Mass–Density Formula of a One-Dimensional Object

Given a thin rod oriented along the over the interval let denote a linear density function giving

the density of the rod at a point x in the interval. Then the mass of the rod is given by

(6.10)

We apply this theorem in the next example.

Example 6.23

Calculating Mass from Linear Density

Consider a thin rod oriented on the x-axis over the interval If the density of the rod is given by
what is the mass of the rod?

Solution
Applying Equation 6.10 directly, we have

Consider a thin rod oriented on the x-axis over the interval If the density of the rod is given by

what is the mass of the rod?

We now extend this concept to find the mass of a two-dimensional disk of radius As with the rod we looked at in
the one-dimensional case, here we assume the disk is thin enough that, for mathematical purposes, we can treat it as a
two-dimensional object. We assume the density is given in terms of mass per unit area (called area density), and further
assume the density varies only along the disk’s radius (called radial density). We orient the disk in the with

the center at the origin. Then, the density of the disk can be treated as a function of denoted We assume

is integrable. Because density is a function of we partition the interval from along the For

let be a regular partition of the interval and for choose an arbitrary

point Now, use the partition to break up the disk into thin (two-dimensional) washers. A disk and a

representative washer are depicted in the following figure.
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Figure 6.50 (a) A thin disk in the xy-plane. (b) A representative washer.

We now approximate the density and area of the washer to calculate an approximate mass, Note that the area of the

washer is given by

You may recall that we had an expression similar to this when we were computing volumes by shells. As we did there, we
use to approximate the average radius of the washer. We obtain

Using to approximate the density of the washer, we approximate the mass of the washer by

Adding up the masses of the washers, we see the mass of the entire disk is approximated by

We again recognize this as a Riemann sum, and take the limit as This gives us

We summarize these findings in the following theorem.

Theorem 6.8: Mass–Density Formula of a Circular Object

Let be an integrable function representing the radial density of a disk of radius Then the mass of the disk is

given by

(6.11)
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Example 6.24

Calculating Mass from Radial Density

Let represent the radial density of a disk. Calculate the mass of a disk of radius 4.

Solution
Applying the formula, we find

Let represent the radial density of a disk. Calculate the mass of a disk of radius 2.

Work Done by a Force
We now consider work. In physics, work is related to force, which is often intuitively defined as a push or pull on an object.
When a force moves an object, we say the force does work on the object. In other words, work can be thought of as the
amount of energy it takes to move an object. According to physics, when we have a constant force, work can be expressed
as the product of force and distance.

In the English system, the unit of force is the pound and the unit of distance is the foot, so work is given in foot-pounds. In
the metric system, kilograms and meters are used. One newton is the force needed to accelerate kilogram of mass at the
rate of m/sec2. Thus, the most common unit of work is the newton-meter. This same unit is also called the joule. Both

are defined as kilograms times meters squared over seconds squared

When we have a constant force, things are pretty easy. It is rare, however, for a force to be constant. The work done to
compress (or elongate) a spring, for example, varies depending on how far the spring has already been compressed (or
stretched). We look at springs in more detail later in this section.

Suppose we have a variable force that moves an object in a positive direction along the x-axis from point to point
To calculate the work done, we partition the interval and estimate the work done over each subinterval. So, for

let be a regular partition of the interval and for choose an arbitrary

point To calculate the work done to move an object from point to point we assume the

force is roughly constant over the interval, and use to approximate the force. The work done over the interval

then, is given by

Therefore, the work done over the interval is approximately

Taking the limit of this expression as gives us the exact value for work:
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Thus, we can define work as follows.

Definition

If a variable force moves an object in a positive direction along the x-axis from point a to point b, then the work
done on the object is

(6.12)

Note that if F is constant, the integral evaluates to which is the formula we stated at the beginning of
this section.

Now let’s look at the specific example of the work done to compress or elongate a spring. Consider a block attached to a
horizontal spring. The block moves back and forth as the spring stretches and compresses. Although in the real world we
would have to account for the force of friction between the block and the surface on which it is resting, we ignore friction
here and assume the block is resting on a frictionless surface. When the spring is at its natural length (at rest), the system is
said to be at equilibrium. In this state, the spring is neither elongated nor compressed, and in this equilibrium position the
block does not move until some force is introduced. We orient the system such that corresponds to the equilibrium
position (see the following figure).

Figure 6.51 A block attached to a horizontal spring at
equilibrium, compressed, and elongated.

According to Hooke’s law, the force required to compress or stretch a spring from an equilibrium position is given by
for some constant The value of depends on the physical characteristics of the spring. The constant

is called the spring constant and is always positive. We can use this information to calculate the work done to compress or
elongate a spring, as shown in the following example.

Example 6.25
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The Work Required to Stretch or Compress a Spring

Suppose it takes a force of N (in the negative direction) to compress a spring m from the equilibrium
position. How much work is done to stretch the spring m from the equilibrium position?

Solution
First find the spring constant, When we know so

and Then, to calculate work, we integrate the force function, obtaining

The work done to stretch the spring is J.

Suppose it takes a force of lb to stretch a spring in. from the equilibrium position. How much work
is done to stretch the spring ft from the equilibrium position?

Work Done in Pumping
Consider the work done to pump water (or some other liquid) out of a tank. Pumping problems are a little more complicated
than spring problems because many of the calculations depend on the shape and size of the tank. In addition, instead of
being concerned about the work done to move a single mass, we are looking at the work done to move a volume of water,
and it takes more work to move the water from the bottom of the tank than it does to move the water from the top of the
tank.

We examine the process in the context of a cylindrical tank, then look at a couple of examples using tanks of different
shapes. Assume a cylindrical tank of radius m and height m is filled to a depth of 8 m. How much work does it take
to pump all the water over the top edge of the tank?

The first thing we need to do is define a frame of reference. We let represent the vertical distance below the top of the
tank. That is, we orient the vertically, with the origin at the top of the tank and the downward direction being positive
(see the following figure).
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Figure 6.52 How much work is needed to empty a tank
partially filled with water?

Using this coordinate system, the water extends from to Therefore, we partition the interval and
look at the work required to lift each individual “layer” of water. So, for let be a regular

partition of the interval and for choose an arbitrary point Figure 6.53

shows a representative layer.

Figure 6.53 A representative layer of water.

In pumping problems, the force required to lift the water to the top of the tank is the force required to overcome gravity, so
it is equal to the weight of the water. Given that the weight-density of water is N/m3, or lb/ft3, calculating the
volume of each layer gives us the weight. In this case, we have

Then, the force needed to lift each layer is

Note that this step becomes a little more difficult if we have a noncylindrical tank. We look at a noncylindrical tank in the
next example.

We also need to know the distance the water must be lifted. Based on our choice of coordinate systems, we can use as

an approximation of the distance the layer must be lifted. Then the work to lift the layer of water is approximately

Adding the work for each layer, we see the approximate work to empty the tank is given by

Chapter 6 | Applications of Integration 691



This is a Riemann sum, so taking the limit as we get

The work required to empty the tank is approximately 23,650,000 J.

For pumping problems, the calculations vary depending on the shape of the tank or container. The following problem-
solving strategy lays out a step-by-step process for solving pumping problems.

Problem-Solving Strategy: Solving Pumping Problems

1. Sketch a picture of the tank and select an appropriate frame of reference.

2. Calculate the volume of a representative layer of water.

3. Multiply the volume by the weight-density of water to get the force.

4. Calculate the distance the layer of water must be lifted.

5. Multiply the force and distance to get an estimate of the work needed to lift the layer of water.

6. Sum the work required to lift all the layers. This expression is an estimate of the work required to pump out
the desired amount of water, and it is in the form of a Riemann sum.

7. Take the limit as and evaluate the resulting integral to get the exact work required to pump out the
desired amount of water.

We now apply this problem-solving strategy in an example with a noncylindrical tank.

Example 6.26

A Pumping Problem with a Noncylindrical Tank

Assume a tank in the shape of an inverted cone, with height ft and base radius ft. The tank is full to start
with, and water is pumped over the upper edge of the tank until the height of the water remaining in the tank is
ft. How much work is required to pump out that amount of water?

Solution
The tank is depicted in Figure 6.54. As we did in the example with the cylindrical tank, we orient the
vertically, with the origin at the top of the tank and the downward direction being positive (step 1).
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Figure 6.54 A water tank in the shape of an inverted cone.

The tank starts out full and ends with ft of water left, so, based on our chosen frame of reference, we need
to partition the interval Then, for let be a regular partition of the interval

and for choose an arbitrary point We can approximate the volume

of a layer by using a disk, then use similar triangles to find the radius of the disk (see the following figure).

Figure 6.55 Using similar triangles to express the radius of a disk of water.
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From properties of similar triangles, we have

Then the volume of the disk is

The weight-density of water is lb/ft3, so the force needed to lift each layer is approximately

Based on the diagram, the distance the water must be lifted is approximately feet (step 4), so the approximate

work needed to lift the layer is

Summing the work required to lift all the layers, we get an approximate value of the total work:

Taking the limit as we obtain

It takes approximately ft-lb of work to empty the tank to the desired level.

A tank is in the shape of an inverted cone, with height ft and base radius 6 ft. The tank is filled to a
depth of 8 ft to start with, and water is pumped over the upper edge of the tank until 3 ft of water remain in the
tank. How much work is required to pump out that amount of water?
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Hydrostatic Force and Pressure
In this last section, we look at the force and pressure exerted on an object submerged in a liquid. In the English system, force
is measured in pounds. In the metric system, it is measured in newtons. Pressure is force per unit area, so in the English
system we have pounds per square foot (or, perhaps more commonly, pounds per square inch, denoted psi). In the metric
system we have newtons per square meter, also called pascals.

Let’s begin with the simple case of a plate of area submerged horizontally in water at a depth s (Figure 6.56). Then, the
force exerted on the plate is simply the weight of the water above it, which is given by where is the weight

density of water (weight per unit volume). To find the hydrostatic pressure—that is, the pressure exerted by water on a
submerged object—we divide the force by the area. So the pressure is

Figure 6.56 A plate submerged horizontally in water.

By Pascal’s principle, the pressure at a given depth is the same in all directions, so it does not matter if the plate is submerged
horizontally or vertically. So, as long as we know the depth, we know the pressure. We can apply Pascal’s principle to find
the force exerted on surfaces, such as dams, that are oriented vertically. We cannot apply the formula directly,

because the depth varies from point to point on a vertically oriented surface. So, as we have done many times before, we
form a partition, a Riemann sum, and, ultimately, a definite integral to calculate the force.

Suppose a thin plate is submerged in water. We choose our frame of reference such that the x-axis is oriented vertically, with
the downward direction being positive, and point corresponding to a logical reference point. Let denote the
depth at point x. Note we often let correspond to the surface of the water. In this case, depth at any point is simply
given by However, in some cases we may want to select a different reference point for so we proceed
with the development in the more general case. Last, let denote the width of the plate at the point

Assume the top edge of the plate is at point and the bottom edge of the plate is at point Then, for
let be a regular partition of the interval and for choose an arbitrary

point The partition divides the plate into several thin, rectangular strips (see the following figure).
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Figure 6.57 A thin plate submerged vertically in water.

Let’s now estimate the force on a representative strip. If the strip is thin enough, we can treat it as if it is at a constant depth,
We then have

Adding the forces, we get an estimate for the force on the plate:

This is a Riemann sum, so taking the limit gives us the exact force. We obtain

(6.13)

Evaluating this integral gives us the force on the plate. We summarize this in the following problem-solving strategy.

Problem-Solving Strategy: Finding Hydrostatic Force

1. Sketch a picture and select an appropriate frame of reference. (Note that if we select a frame of reference other
than the one used earlier, we may have to adjust Equation 6.13 accordingly.)

2. Determine the depth and width functions, and

3. Determine the weight-density of whatever liquid with which you are working. The weight-density of water is
lb/ft3, or 9800 N/m3.

4. Use the equation to calculate the total force.

Example 6.27

Finding Hydrostatic Force

A water trough 15 ft long has ends shaped like inverted isosceles triangles, with base 8 ft and height 3 ft. Find the
force on one end of the trough if the trough is full of water.

Solution
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Figure 6.58 shows the trough and a more detailed view of one end.

Figure 6.58 (a) A water trough with a triangular cross-section. (b)
Dimensions of one end of the water trough.

Select a frame of reference with the oriented vertically and the downward direction being positive. Select
the top of the trough as the point corresponding to (step 1). The depth function, then, is Using
similar triangles, we see that (step 2). Now, the weight density of water is lb/ft3 (step
3), so applying Equation 6.13, we obtain

The water exerts a force of 748.8 lb on the end of the trough (step 4).

A water trough 12 m long has ends shaped like inverted isosceles triangles, with base 6 m and height 4
m. Find the force on one end of the trough if the trough is full of water.
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Example 6.28

Chapter Opener: Finding Hydrostatic Force

We now return our attention to the Hoover Dam, mentioned at the beginning of this chapter. The actual dam is
arched, rather than flat, but we are going to make some simplifying assumptions to help us with the calculations.
Assume the face of the Hoover Dam is shaped like an isosceles trapezoid with lower base ft, upper base

ft, and height ft (see the following figure).

When the reservoir is full, Lake Mead’s maximum depth is about 530 ft, and the surface of the lake is about 10 ft
below the top of the dam (see the following figure).

Figure 6.59 A simplified model of the Hoover Dam with
assumed dimensions.

a. Find the force on the face of the dam when the reservoir is full.

b. The southwest United States has been experiencing a drought, and the surface of Lake Mead is about 125
ft below where it would be if the reservoir were full. What is the force on the face of the dam under these
circumstances?

Solution
a. We begin by establishing a frame of reference. As usual, we choose to orient the vertically, with

the downward direction being positive. This time, however, we are going to let represent the top
of the dam, rather than the surface of the water. When the reservoir is full, the surface of the water is
ft below the top of the dam, so (see the following figure).
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Figure 6.60 We first choose a frame of reference.

To find the width function, we again turn to similar triangles as shown in the figure below.

Figure 6.61 We use similar triangles to determine a function
for the width of the dam. (a) Assumed dimensions of the dam;
(b) highlighting the similar triangles.

From the figure, we see that Using properties of similar triangles, we get
Thus,

Using a weight-density of lb/ft3 (step 3) and applying Equation 6.13, we get
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Note the change from pounds to tons lb = ton) (step 4).

b. Notice that the drought changes our depth function, and our limits of integration. We have
The lower limit of integration is The upper limit remains Evaluating the

integral, we get

When the reservoir is at its average level, the surface of the water is about 50 ft below where it would be
if the reservoir were full. What is the force on the face of the dam under these circumstances?

To learn more about Hoover Dam, see this article (http://www.openstax.org/l/20_HooverDam) published
by the History Channel.
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6.5 EXERCISES
For the following exercises, find the work done.

218. Find the work done when a constant force
lb moves a chair from to ft.

219. How much work is done when a person lifts a lb
box of comics onto a truck that is ft off the ground?

220. What is the work done lifting a kg child from the
floor to a height of m? (Note that kg equates to
N)

221. Find the work done when you push a box along
the floor m, when you apply a constant force of

222. Compute the work done for a force N
from to m.

223. What is the work done moving a particle from

to m if the force acting on it is N?

For the following exercises, find the mass of the one-
dimensional object.

224. A wire that is ft long (starting at and has

a density function of lb/ft

225. A car antenna that is ft long (starting at
and has a density function of lb/ft

226. A metal rod that is in. long (starting at and

has a density function of lb/in.

227. A pencil that is in. long (starting at and
has a density function of oz/in.

228. A ruler that is in. long (starting at and

has a density function of oz/in.

For the following exercises, find the mass of the two-
dimensional object that is centered at the origin.

229. An oversized hockey puck of radius in. with

density function

230. A frisbee of radius in. with density function

231. A plate of radius in. with density function

232. A jar lid of radius in. with density function

233. A disk of radius cm with density function

234. A -in. spring is stretched to in. by a force of
lb. What is the spring constant?

235. A spring has a natural length of cm. It takes
J to stretch the spring to cm. How much work would it
take to stretch the spring from cm to cm?

236. A -m spring requires J to stretch the spring to
m. How much work would it take to stretch the spring

from m to m?

237. A spring requires J to stretch the spring from
cm to cm, and an additional J to stretch the spring
from cm to cm. What is the natural length of the
spring?

238. A shock absorber is compressed 1 in. by a weight of
1 t. What is the spring constant?

239. A force of N stretches a nonlinear
spring by meters. What work is required to stretch the
spring from to m?

240. Find the work done by winding up a hanging cable of
length ft and weight-density lb/ft.

241. For the cable in the preceding exercise, how much
work is done to lift the cable ft?

242. For the cable in the preceding exercise, how much
additional work is done by hanging a lb weight at the
end of the cable?

243. [T] A pyramid of height ft has a square base
ft by ft. Find the area at height If the

rock used to build the pyramid weighs approximately
how much work did it take to lift all the

rock?
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244. [T] For the pyramid in the preceding exercise,
assume there were workers each working hours
a day, days a week, weeks a year. If the workers, on
average, lifted 10 100 lb rocks ft/hr, how long did it take
to build the pyramid?

245. [T] The force of gravity on a mass is

newtons. For a rocket of mass

compute the work to lift the rocket from

to m. State your answers with three

significant figures. (Note:

and

246. [T] For the rocket in the preceding exercise, find the
work to lift the rocket from to

247. [T] A rectangular dam is ft high and ft wide.
Compute the total force on the dam when

a. the surface of the water is at the top of the dam and
b. the surface of the water is halfway down the dam.

248. [T] Find the work required to pump all the water out
of a cylinder that has a circular base of radius ft and
height ft. Use the fact that the density of water is
lb/ft3.

249. [T] Find the work required to pump all the water out
of the cylinder in the preceding exercise if the cylinder is
only half full.

250. [T] How much work is required to pump out a
swimming pool if the area of the base is ft2, the water
is ft deep, and the top is ft above the water level?
Assume that the density of water is lb/ft3.

251. A cylinder of depth and cross-sectional area
stands full of water at density Compute the work to

pump all the water to the top.

252. For the cylinder in the preceding exercise, compute
the work to pump all the water to the top if the cylinder is
only half full.

253. A cone-shaped tank has a cross-sectional area that
increases with its depth: Show that the

work to empty it is half the work for a cylinder with the
same height and base.
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6.6 | Moments and Centers of Mass

Learning Objectives
6.6.1 Find the center of mass of objects distributed along a line.
6.6.2 Locate the center of mass of a thin plate.
6.6.3 Use symmetry to help locate the centroid of a thin plate.
6.6.4 Apply the theorem of Pappus for volume.

In this section, we consider centers of mass (also called centroids, under certain conditions) and moments. The basic idea
of the center of mass is the notion of a balancing point. Many of us have seen performers who spin plates on the ends of
sticks. The performers try to keep several of them spinning without allowing any of them to drop. If we look at a single plate
(without spinning it), there is a sweet spot on the plate where it balances perfectly on the stick. If we put the stick anywhere
other than that sweet spot, the plate does not balance and it falls to the ground. (That is why performers spin the plates; the
spin helps keep the plates from falling even if the stick is not exactly in the right place.) Mathematically, that sweet spot is
called the center of mass of the plate.

In this section, we first examine these concepts in a one-dimensional context, then expand our development to consider
centers of mass of two-dimensional regions and symmetry. Last, we use centroids to find the volume of certain solids by
applying the theorem of Pappus.

Center of Mass and Moments
Let’s begin by looking at the center of mass in a one-dimensional context. Consider a long, thin wire or rod of negligible
mass resting on a fulcrum, as shown in Figure 6.62(a). Now suppose we place objects having masses and at

distances and from the fulcrum, respectively, as shown in Figure 6.62(b).

Figure 6.62 (a) A thin rod rests on a fulcrum. (b) Masses are
placed on the rod.

The most common real-life example of a system like this is a playground seesaw, or teeter-totter, with children of different
weights sitting at different distances from the center. On a seesaw, if one child sits at each end, the heavier child sinks
down and the lighter child is lifted into the air. If the heavier child slides in toward the center, though, the seesaw balances.
Applying this concept to the masses on the rod, we note that the masses balance each other if and only if

In the seesaw example, we balanced the system by moving the masses (children) with respect to the fulcrum. However,
we are really interested in systems in which the masses are not allowed to move, and instead we balance the system by
moving the fulcrum. Suppose we have two point masses, and located on a number line at points and

respectively (Figure 6.63). The center of mass, is the point where the fulcrum should be placed to make the system
balance.
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Figure 6.63 The center of mass is the balance point of
the system.

Thus, we have

The expression in the numerator, is called the first moment of the system with respect to the origin. If the

context is clear, we often drop the word first and just refer to this expression as the moment of the system. The expression
in the denominator, is the total mass of the system. Thus, the center of mass of the system is the point at which

the total mass of the system could be concentrated without changing the moment.

This idea is not limited just to two point masses. In general, if n masses, are placed on a number line at

points respectively, then the center of mass of the system is given by

Theorem 6.9: Center of Mass of Objects on a Line

Let be point masses placed on a number line at points respectively, and let

denote the total mass of the system. Then, the moment of the system with respect to the origin is given

by

(6.14)

and the center of mass of the system is given by

(6.15)

We apply this theorem in the following example.

Example 6.29

Finding the Center of Mass of Objects along a Line

Suppose four point masses are placed on a number line as follows:
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6.29

Find the moment of the system with respect to the origin and find the center of mass of the system.

Solution
First, we need to calculate the moment of the system:

Now, to find the center of mass, we need the total mass of the system:

Then we have

The center of mass is located 1/2 m to the left of the origin.

Suppose four point masses are placed on a number line as follows:

Find the moment of the system with respect to the origin and find the center of mass of the system.

We can generalize this concept to find the center of mass of a system of point masses in a plane. Let be a point

mass located at point in the plane. Then the moment of the mass with respect to the x-axis is given by

Similarly, the moment with respect to the y-axis is given by Notice that the x-coordinate

of the point is used to calculate the moment with respect to the y-axis, and vice versa. The reason is that the x-coordinate
gives the distance from the point mass to the y-axis, and the y-coordinate gives the distance to the x-axis (see the following
figure).

Figure 6.64 Point mass is located at point in

the plane.

If we have several point masses in the xy-plane, we can use the moments with respect to the x- and y-axes to calculate the
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x- and y-coordinates of the center of mass of the system.

Theorem 6.10: Center of Mass of Objects in a Plane

Let be point masses located in the xy-plane at points respectively,

and let denote the total mass of the system. Then the moments and of the system with respect

to the x- and y-axes, respectively, are given by

(6.16)

Also, the coordinates of the center of mass of the system are

(6.17)

The next example demonstrates how to apply this theorem.

Example 6.30

Finding the Center of Mass of Objects in a Plane

Suppose three point masses are placed in the xy-plane as follows (assume coordinates are given in meters):

Find the center of mass of the system.

Solution
First we calculate the total mass of the system:

Next we find the moments with respect to the x- and y-axes:

Then we have

The center of mass of the system is in meters.
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6.30 Suppose three point masses are placed on a number line as follows (assume coordinates are given in
meters):

Find the center of mass of the system.

Center of Mass of Thin Plates
So far we have looked at systems of point masses on a line and in a plane. Now, instead of having the mass of a system
concentrated at discrete points, we want to look at systems in which the mass of the system is distributed continuously
across a thin sheet of material. For our purposes, we assume the sheet is thin enough that it can be treated as if it is two-
dimensional. Such a sheet is called a lamina. Next we develop techniques to find the center of mass of a lamina. In this
section, we also assume the density of the lamina is constant.

Laminas are often represented by a two-dimensional region in a plane. The geometric center of such a region is called its
centroid. Since we have assumed the density of the lamina is constant, the center of mass of the lamina depends only on
the shape of the corresponding region in the plane; it does not depend on the density. In this case, the center of mass of the
lamina corresponds to the centroid of the delineated region in the plane. As with systems of point masses, we need to find
the total mass of the lamina, as well as the moments of the lamina with respect to the x- and y-axes.

We first consider a lamina in the shape of a rectangle. Recall that the center of mass of a lamina is the point where the lamina
balances. For a rectangle, that point is both the horizontal and vertical center of the rectangle. Based on this understanding,
it is clear that the center of mass of a rectangular lamina is the point where the diagonals intersect, which is a result of the
symmetry principle, and it is stated here without proof.

Theorem 6.11: The Symmetry Principle

If a region R is symmetric about a line l, then the centroid of R lies on l.

Let’s turn to more general laminas. Suppose we have a lamina bounded above by the graph of a continuous function

below by the x-axis, and on the left and right by the lines and respectively, as shown in the following figure.

Figure 6.65 A region in the plane representing a lamina.

As with systems of point masses, to find the center of mass of the lamina, we need to find the total mass of the lamina, as
well as the moments of the lamina with respect to the x- and y-axes. As we have done many times before, we approximate
these quantities by partitioning the interval and constructing rectangles.

For let be a regular partition of Recall that we can choose any point within the

interval as our In this case, we want to be the x-coordinate of the centroid of our rectangles. Thus, for

we select such that is the midpoint of the interval. That is,

Now, for construct a rectangle of height on The center of mass of this rectangle is
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as shown in the following figure.

Figure 6.66 A representative rectangle of the lamina.

Next, we need to find the total mass of the rectangle. Let represent the density of the lamina (note that is a constant).

In this case, is expressed in terms of mass per unit area. Thus, to find the total mass of the rectangle, we multiply the area

of the rectangle by Then, the mass of the rectangle is given by

To get the approximate mass of the lamina, we add the masses of all the rectangles to get

This is a Riemann sum. Taking the limit as gives the exact mass of the lamina:

Next, we calculate the moment of the lamina with respect to the x-axis. Returning to the representative rectangle, recall its
center of mass is Recall also that treating the rectangle as if it is a point mass located at the center of

mass does not change the moment. Thus, the moment of the rectangle with respect to the x-axis is given by the mass of
the rectangle, multiplied by the distance from the center of mass to the x-axis: Therefore, the

moment with respect to the x-axis of the rectangle is Adding the moments of the rectangles and taking

the limit of the resulting Riemann sum, we see that the moment of the lamina with respect to the x-axis is

We derive the moment with respect to the y-axis similarly, noting that the distance from the center of mass of the rectangle
to the y-axis is Then the moment of the lamina with respect to the y-axis is given by

We find the coordinates of the center of mass by dividing the moments by the total mass to give
If we look closely at the expressions for we notice that the constant

cancels out when and are calculated.

We summarize these findings in the following theorem.

Theorem 6.12: Center of Mass of a Thin Plate in the xy-Plane

Let R denote a region bounded above by the graph of a continuous function below by the x-axis, and on the left
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and right by the lines and respectively. Let denote the density of the associated lamina. Then we

can make the following statements:

i. The mass of the lamina is

(6.18)

ii. The moments and of the lamina with respect to the x- and y-axes, respectively, are

(6.19)

iii. The coordinates of the center of mass are

(6.20)

In the next example, we use this theorem to find the center of mass of a lamina.

Example 6.31

Finding the Center of Mass of a Lamina

Let R be the region bounded above by the graph of the function and below by the x-axis over the

interval Find the centroid of the region.

Solution
The region is depicted in the following figure.

Figure 6.67 Finding the center of mass of a lamina.

Since we are only asked for the centroid of the region, rather than the mass or moments of the associated
lamina, we know the density constant cancels out of the calculations eventually. Therefore, for the sake of

convenience, let’s assume

First, we need to calculate the total mass:
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6.31

Next, we compute the moments:

and

Thus, we have

The centroid of the region is

Let R be the region bounded above by the graph of the function and below by the x-axis over

the interval Find the centroid of the region.

We can adapt this approach to find centroids of more complex regions as well. Suppose our region is bounded above by the
graph of a continuous function as before, but now, instead of having the lower bound for the region be the x-axis,

suppose the region is bounded below by the graph of a second continuous function, as shown in the following figure.

Figure 6.68 A region between two functions.

Again, we partition the interval and construct rectangles. A representative rectangle is shown in the following figure.
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Figure 6.69 A representative rectangle of the region between
two functions.

Note that the centroid of this rectangle is We won’t go through all the details of the Riemann

sum development, but let’s look at some of the key steps. In the development of the formulas for the mass of the lamina
and the moment with respect to the y-axis, the height of each rectangle is given by which leads to the

expression in the integrands.

In the development of the formula for the moment with respect to the x-axis, the moment of each rectangle is found
by multiplying the area of the rectangle, by the distance of the centroid from the x-axis,

which gives Summarizing these findings, we arrive at the

following theorem.

Theorem 6.13: Center of Mass of a Lamina Bounded by Two Functions

Let R denote a region bounded above by the graph of a continuous function below by the graph of the

continuous function and on the left and right by the lines and respectively. Let denote the

density of the associated lamina. Then we can make the following statements:

i. The mass of the lamina is

(6.21)

ii. The moments and of the lamina with respect to the x- and y-axes, respectively, are

(6.22)

iii. The coordinates of the center of mass are

(6.23)

We illustrate this theorem in the following example.

Example 6.32

Finding the Centroid of a Region Bounded by Two Functions

Let R be the region bounded above by the graph of the function and below by the graph of the

function Find the centroid of the region.
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Solution
The region is depicted in the following figure.

Figure 6.70 Finding the centroid of a region between two
curves.

The graphs of the functions intersect at and so we integrate from −2 to 1. Once again, for the
sake of convenience, assume

First, we need to calculate the total mass:

Next, we compute the moments:

and

Therefore, we have
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6.32

The centroid of the region is

Let R be the region bounded above by the graph of the function and below by the graph

of the function Find the centroid of the region.

The Symmetry Principle
We stated the symmetry principle earlier, when we were looking at the centroid of a rectangle. The symmetry principle can
be a great help when finding centroids of regions that are symmetric. Consider the following example.

Example 6.33

Finding the Centroid of a Symmetric Region

Let R be the region bounded above by the graph of the function and below by the x-axis. Find the

centroid of the region.

Solution
The region is depicted in the following figure.

Figure 6.71 We can use the symmetry principle to help find
the centroid of a symmetric region.

The region is symmetric with respect to the y-axis. Therefore, the x-coordinate of the centroid is zero. We need
only calculate Once again, for the sake of convenience, assume

First, we calculate the total mass:
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Next, we calculate the moments. We only need

Then we have

The centroid of the region is

Let R be the region bounded above by the graph of the function and below by x-axis.

Find the centroid of the region.
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The Grand Canyon Skywalk

The Grand Canyon Skywalk opened to the public on March 28, 2007. This engineering marvel is a horseshoe-shaped
observation platform suspended 4000 ft above the Colorado River on the West Rim of the Grand Canyon. Its crystal-
clear glass floor allows stunning views of the canyon below (see the following figure).

Figure 6.72 The Grand Canyon Skywalk offers magnificent views of the canyon. (credit: 10da_ralta, Wikimedia
Commons)

The Skywalk is a cantilever design, meaning that the observation platform extends over the rim of the canyon, with no
visible means of support below it. Despite the lack of visible support posts or struts, cantilever structures are engineered
to be very stable and the Skywalk is no exception. The observation platform is attached firmly to support posts that
extend 46 ft down into bedrock. The structure was built to withstand 100-mph winds and an 8.0-magnitude earthquake
within 50 mi, and is capable of supporting more than 70,000,000 lb.

One factor affecting the stability of the Skywalk is the center of gravity of the structure. We are going to calculate
the center of gravity of the Skywalk, and examine how the center of gravity changes when tourists walk out onto the
observation platform.

The observation platform is U-shaped. The legs of the U are 10 ft wide and begin on land, under the visitors’ center,
48 ft from the edge of the canyon. The platform extends 70 ft over the edge of the canyon.

To calculate the center of mass of the structure, we treat it as a lamina and use a two-dimensional region in the xy-plane
to represent the platform. We begin by dividing the region into three subregions so we can consider each subregion
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separately. The first region, denoted consists of the curved part of the U. We model as a semicircular annulus,

with inner radius 25 ft and outer radius 35 ft, centered at the origin (see the following figure).

Figure 6.73 We model the Skywalk with three sub-regions.

The legs of the platform, extending 35 ft between and the canyon wall, comprise the second sub-region, Last,

the ends of the legs, which extend 48 ft under the visitor center, comprise the third sub-region, Assume the density

of the lamina is constant and assume the total weight of the platform is 1,200,000 lb (not including the weight of the
visitor center; we will consider that later). Use

1. Compute the area of each of the three sub-regions. Note that the areas of regions and should include

the areas of the legs only, not the open space between them. Round answers to the nearest square foot.

2. Determine the mass associated with each of the three sub-regions.

3. Calculate the center of mass of each of the three sub-regions.

4. Now, treat each of the three sub-regions as a point mass located at the center of mass of the corresponding
sub-region. Using this representation, calculate the center of mass of the entire platform.

5. Assume the visitor center weighs 2,200,000 lb, with a center of mass corresponding to the center of mass of
Treating the visitor center as a point mass, recalculate the center of mass of the system. How does the

center of mass change?

6. Although the Skywalk was built to limit the number of people on the observation platform to 120, the platform
is capable of supporting up to 800 people weighing 200 lb each. If all 800 people were allowed on the platform,
and all of them went to the farthest end of the platform, how would the center of gravity of the system be
affected? (Include the visitor center in the calculations and represent the people by a point mass located at the
farthest edge of the platform, 70 ft from the canyon wall.)

Theorem of Pappus
This section ends with a discussion of the theorem of Pappus for volume, which allows us to find the volume of particular
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kinds of solids by using the centroid. (There is also a theorem of Pappus for surface area, but it is much less useful than the
theorem for volume.)

Theorem 6.14: Theorem of Pappus for Volume

Let R be a region in the plane and let l be a line in the plane that does not intersect R. Then the volume of the solid of
revolution formed by revolving R around l is equal to the area of R multiplied by the distance d traveled by the centroid
of R.

Proof
We can prove the case when the region is bounded above by the graph of a function and below by the graph of a

function over an interval and for which the axis of revolution is the y-axis. In this case, the area of the region is

Since the axis of rotation is the y-axis, the distance traveled by the centroid of the region depends

only on the x-coordinate of the centroid, which is

where

Then,

and thus

However, using the method of cylindrical shells, we have

So,

and the proof is complete.

□

Example 6.34

Using the Theorem of Pappus for Volume

Let R be a circle of radius 2 centered at Use the theorem of Pappus for volume to find the volume of the
torus generated by revolving R around the y-axis.
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Solution
The region and torus are depicted in the following figure.

Figure 6.74 Determining the volume of a torus by using the theorem of Pappus. (a) A
circular region R in the plane; (b) the torus generated by revolving R about the y-axis.

The region R is a circle of radius 2, so the area of R is units2. By the symmetry principle, the centroid of
R is the center of the circle. The centroid travels around the y-axis in a circular path of radius 4, so the centroid
travels units. Then, the volume of the torus is units3.

Let R be a circle of radius 1 centered at Use the theorem of Pappus for volume to find the

volume of the torus generated by revolving R around the y-axis.
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6.6 EXERCISES
For the following exercises, calculate the center of mass for
the collection of masses given.

254. at and at

255. at and at

256. at

257. Unit masses at

258. at and at

259. at and at

For the following exercises, compute the center of mass

260. for

261. for

262. for and for

263. for

264. for

265. for

266. for

267. for

268. for

269. for

For the following exercises, compute the center of mass
Use symmetry to help locate the center of mass

whenever possible.

270. in the square

271. in the triangle with vertices

and

272. for the region bounded by

and

For the following exercises, use a calculator to draw the
region, then compute the center of mass Use

symmetry to help locate the center of mass whenever
possible.

273. [T] The region bounded by

and

274. [T] The region between

and

275. [T] The region between and

276. [T] Region between

and

277. [T] The region bounded by

278. [T] The region bounded by and

279. [T] The region bounded by and in

the first quadrant

For the following exercises, use the theorem of Pappus to
determine the volume of the shape.

280. Rotating around the -axis between

and

281. Rotating around the -axis between

and

282. A general cone created by rotating a triangle with
vertices and around the -axis.

Does your answer agree with the volume of a cone?

283. A general cylinder created by rotating a rectangle
with vertices and around
the -axis. Does your answer agree with the volume of a

cylinder?

284. A sphere created by rotating a semicircle with radius
around the -axis. Does your answer agree with the

volume of a sphere?

For the following exercises, use a calculator to draw the
region enclosed by the curve. Find the area and the
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centroid for the given shapes. Use symmetry to

help locate the center of mass whenever possible.

285. [T] Quarter-circle: and

286. [T] Triangle: and

287. [T] Lens: and

288. [T] Ring: and

289. [T] Half-ring: and

290. Find the generalized center of mass in the sliver
between and with Then, use the

Pappus theorem to find the volume of the solid generated
when revolving around the y-axis.

291. Find the generalized center of mass between
and Then, use the Pappus

theorem to find the volume of the solid generated when
revolving around the y-axis.

292. Find the generalized center of mass between
and Then, use the

Pappus theorem to find the volume of the solid generated
when revolving around the y-axis.

293. Use the theorem of Pappus to find the volume of
a torus (pictured here). Assume that a disk of radius
is positioned with the left end of the circle at

and is rotated around the y-axis.

294. Find the center of mass for a thin wire along

the semicircle with unit mass. (Hint: Use the

theorem of Pappus.)
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6.7 | Integrals, Exponential Functions, and Logarithms

Learning Objectives
6.7.1 Write the definition of the natural logarithm as an integral.
6.7.2 Recognize the derivative of the natural logarithm.
6.7.3 Integrate functions involving the natural logarithmic function.
6.7.4 Define the number through an integral.

6.7.5 Recognize the derivative and integral of the exponential function.
6.7.6 Prove properties of logarithms and exponential functions using integrals.
6.7.7 Express general logarithmic and exponential functions in terms of natural logarithms and
exponentials.

We already examined exponential functions and logarithms in earlier chapters. However, we glossed over some key details
in the previous discussions. For example, we did not study how to treat exponential functions with exponents that are
irrational. The definition of the number e is another area where the previous development was somewhat incomplete. We
now have the tools to deal with these concepts in a more mathematically rigorous way, and we do so in this section.

For purposes of this section, assume we have not yet defined the natural logarithm, the number e, or any of the integration
and differentiation formulas associated with these functions. By the end of the section, we will have studied these concepts
in a mathematically rigorous way (and we will see they are consistent with the concepts we learned earlier).

We begin the section by defining the natural logarithm in terms of an integral. This definition forms the foundation for
the section. From this definition, we derive differentiation formulas, define the number and expand these concepts to
logarithms and exponential functions of any base.

The Natural Logarithm as an Integral
Recall the power rule for integrals:

Clearly, this does not work when as it would force us to divide by zero. So, what do we do with Recall

from the Fundamental Theorem of Calculus that is an antiderivative of Therefore, we can make the following

definition.

Definition

For define the natural logarithm function by

(6.24)

For this is just the area under the curve from to For we have so in

this case it is the negative of the area under the curve from (see the following figure).
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Figure 6.75 (a) When the natural logarithm is the area under the

curve from (b) When the natural logarithm is the

negative of the area under the curve from to

Notice that Furthermore, the function for Therefore, by the properties of integrals, it is clear

that is increasing for

Properties of the Natural Logarithm
Because of the way we defined the natural logarithm, the following differentiation formula falls out immediately as a result
of to the Fundamental Theorem of Calculus.

Theorem 6.15: Derivative of the Natural Logarithm

For the derivative of the natural logarithm is given by

Theorem 6.16: Corollary to the Derivative of the Natural Logarithm

The function is differentiable; therefore, it is continuous.

A graph of is shown in Figure 6.76. Notice that it is continuous throughout its domain of
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6.35

Figure 6.76 The graph of shows that it is a

continuous function.

Example 6.35

Calculating Derivatives of Natural Logarithms

Calculate the following derivatives:

a.

b.

Solution
We need to apply the chain rule in both cases.

a.

b.

Calculate the following derivatives:

a.

b.

Note that if we use the absolute value function and create a new function we can extend the domain of the natural
logarithm to include Then This gives rise to the familiar integration formula.

Theorem 6.17: Integral of (1/u) du

The natural logarithm is the antiderivative of the function
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Example 6.36

Calculating Integrals Involving Natural Logarithms

Calculate the integral

Solution

Using -substitution, let Then and we have

Calculate the integral

Although we have called our function a “logarithm,” we have not actually proved that any of the properties of logarithms
hold for this function. We do so here.

Theorem 6.18: Properties of the Natural Logarithm

If and is a rational number, then

i.

ii.

iii.

iv.

Proof

i. By definition,

ii. We have

()

Use on the last integral in this expression. Let Then Furthermore, when
and when So we get

()
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iv. Note that

()

Furthermore,

()

Since the derivatives of these two functions are the same, by the Fundamental Theorem of Calculus, they must differ by a
constant. So we have

()

for some constant Taking we get

()

Thus and the proof is complete. Note that we can extend this property to irrational values of later in this
section.
Part iii. follows from parts ii. and iv. and the proof is left to you.

□

Example 6.37

Using Properties of Logarithms

Use properties of logarithms to simplify the following expression into a single logarithm:

Solution
We have

Use properties of logarithms to simplify the following expression into a single logarithm:

Defining the Number e
Now that we have the natural logarithm defined, we can use that function to define the number

Definition

The number is defined to be the real number such that
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To put it another way, the area under the curve between and is (Figure 6.77). The proof that such

a number exists and is unique is left to you. (Hint: Use the Intermediate Value Theorem to prove existence and the fact that
is increasing to prove uniqueness.)

Figure 6.77 The area under the curve from to is equal
to one.

The number can be shown to be irrational, although we won’t do so here (see the Student Project in Taylor and
Maclaurin Series (http://cnx.org/content/m53817/latest/) ). Its approximate value is given by

The Exponential Function
We now turn our attention to the function Note that the natural logarithm is one-to-one and therefore has an inverse
function. For now, we denote this inverse function by Then,

The following figure shows the graphs of and

Figure 6.78 The graphs of and

We hypothesize that For rational values of this is easy to show. If is rational, then we have

Thus, when is rational, For irrational values of we simply define as the

inverse function of
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Definition

For any real number define to be the number for which

(6.25)

Then we have for all and thus

(6.26)

for all

Properties of the Exponential Function
Since the exponential function was defined in terms of an inverse function, and not in terms of a power of we must

verify that the usual laws of exponents hold for the function

Theorem 6.19: Properties of the Exponential Function

If and are any real numbers and is a rational number, then

i.

ii.

iii.

Proof
Note that if and are rational, the properties hold. However, if or are irrational, we must apply the inverse

function definition of and verify the properties. Only the first property is verified here; the other two are left to you. We
have

Since is one-to-one, then

□

As with part iv. of the logarithm properties, we can extend property iii. to irrational values of and we do so by the end
of the section.

We also want to verify the differentiation formula for the function To do this, we need to use implicit

differentiation. Let Then

Thus, we see
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as desired, which leads immediately to the integration formula

We apply these formulas in the following examples.

Example 6.38

Using Properties of Exponential Functions

Evaluate the following derivatives:

a.

b.

Solution
We apply the chain rule as necessary.

a.

b.

Evaluate the following derivatives:

a.

b.

Example 6.39

Using Properties of Exponential Functions

Evaluate the following integral:

Solution

Using -substitution, let Then and we have
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6.39 Evaluate the following integral:

General Logarithmic and Exponential Functions
We close this section by looking at exponential functions and logarithms with bases other than Exponential functions
are functions of the form Note that unless we still do not have a mathematically rigorous definition

of these functions for irrational exponents. Let’s rectify that here by defining the function in terms of the

exponential function We then examine logarithms with bases other than as inverse functions of exponential
functions.

Definition

For any and for any real number define as follows:

Now is defined rigorously for all values of x. This definition also allows us to generalize property iv. of logarithms and
property iii. of exponential functions to apply to both rational and irrational values of It is straightforward to show that
properties of exponents hold for general exponential functions defined in this way.

Let’s now apply this definition to calculate a differentiation formula for We have

The corresponding integration formula follows immediately.

Theorem 6.20: Derivatives and Integrals Involving General Exponential Functions

Let Then,

and

If then the function is one-to-one and has a well-defined inverse. Its inverse is denoted by Then,

Note that general logarithm functions can be written in terms of the natural logarithm. Let Then,

Taking the natural logarithm of both sides of this second equation, we get

Thus, we see that all logarithmic functions are constant multiples of one another. Next, we use this formula to find a
differentiation formula for a logarithm with base Again, let Then,
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Theorem 6.21: Derivatives of General Logarithm Functions

Let Then,

Example 6.40

Calculating Derivatives of General Exponential and Logarithm Functions

Evaluate the following derivatives:

a.

b.

Solution
We need to apply the chain rule as necessary.

a.

b.

Evaluate the following derivatives:

a.

b.

Example 6.41

Integrating General Exponential Functions
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Evaluate the following integral:

Solution
Use and let Then and we have

Evaluate the following integral:
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6.7 EXERCISES
For the following exercises, find the derivative

295.

296.

297.

For the following exercises, find the indefinite integral.

298.

299.

For the following exercises, find the derivative

(You can use a calculator to plot the function and the
derivative to confirm that it is correct.)

300. [T]

301. [T]

302. [T]

303. [T]

304. [T]

305. [T]

306. [T]

307. [T]

308. [T]

309. [T]

For the following exercises, find the definite or indefinite
integral.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

For the following exercises, compute by

differentiating

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

For the following exercises, evaluate by any method.
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330.

331.

332.

333.

334.

For the following exercises, use the function If you
are unable to find intersection points analytically, use a
calculator.

335. Find the area of the region enclosed by and
above

336. [T] Find the arc length of from to

337. Find the area between and the x-axis from

338. Find the volume of the shape created when rotating
this curve from around the x-axis, as
pictured here.

339. [T] Find the surface area of the shape created when
rotating the curve in the previous exercise from to

around the x-axis.

If you are unable to find intersection points analytically in
the following exercises, use a calculator.

340. Find the area of the hyperbolic quarter-circle
enclosed by above

341. [T] Find the arc length of from

342. Find the area under and above the x-axis

from

For the following exercises, verify the derivatives and
antiderivatives.

343.

344.

345.

346.

347.
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6.8 | Exponential Growth and Decay

Learning Objectives
6.8.1 Use the exponential growth model in applications, including population growth and
compound interest.
6.8.2 Explain the concept of doubling time.
6.8.3 Use the exponential decay model in applications, including radioactive decay and Newton’s
law of cooling.
6.8.4 Explain the concept of half-life.

One of the most prevalent applications of exponential functions involves growth and decay models. Exponential growth
and decay show up in a host of natural applications. From population growth and continuously compounded interest to
radioactive decay and Newton’s law of cooling, exponential functions are ubiquitous in nature. In this section, we examine
exponential growth and decay in the context of some of these applications.

Exponential Growth Model
Many systems exhibit exponential growth. These systems follow a model of the form where represents

the initial state of the system and is a positive constant, called the growth constant. Notice that in an exponential growth
model, we have

(6.27)

That is, the rate of growth is proportional to the current function value. This is a key feature of exponential growth.
Equation 6.27 involves derivatives and is called a differential equation. We learn more about differential equations in
Introduction to Differential Equations (http://cnx.org/content/m53696/latest/) .

Rule: Exponential Growth Model

Systems that exhibit exponential growth increase according to the mathematical model

where represents the initial state of the system and is a constant, called the growth constant.

Population growth is a common example of exponential growth. Consider a population of bacteria, for instance. It seems
plausible that the rate of population growth would be proportional to the size of the population. After all, the more bacteria
there are to reproduce, the faster the population grows. Figure 6.79 and Table 6.1 represent the growth of a population
of bacteria with an initial population of bacteria and a growth constant of Notice that after only hours
minutes), the population is times its original size!
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Figure 6.79 An example of exponential growth for bacteria.

Time (min) Population Size (no. of bacteria)

Table 6.1 Exponential Growth of a Bacterial Population

Note that we are using a continuous function to model what is inherently discrete behavior. At any given time, the real-world
population contains a whole number of bacteria, although the model takes on noninteger values. When using exponential
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growth models, we must always be careful to interpret the function values in the context of the phenomenon we are
modeling.

Example 6.42

Population Growth

Consider the population of bacteria described earlier. This population grows according to the function
where t is measured in minutes. How many bacteria are present in the population after

hours minutes)? When does the population reach bacteria?

Solution

We have Then

There are bacteria in the population after hours.

To find when the population reaches bacteria, we solve the equation

The population reaches bacteria after minutes.

Consider a population of bacteria that grows according to the function where is

measured in minutes. How many bacteria are present in the population after 4 hours? When does the population
reach million bacteria?

Let’s now turn our attention to a financial application: compound interest. Interest that is not compounded is called simple
interest. Simple interest is paid once, at the end of the specified time period (usually year). So, if we put in a
savings account earning simple interest per year, then at the end of the year we have

Compound interest is paid multiple times per year, depending on the compounding period. Therefore, if the bank
compounds the interest every months, it credits half of the year’s interest to the account after months. During the
second half of the year, the account earns interest not only on the initial but also on the interest earned during the
first half of the year. Mathematically speaking, at the end of the year, we have

Similarly, if the interest is compounded every months, we have

and if the interest is compounded daily times per year), we have If we extend this concept, so that the
interest is compounded continuously, after years we have
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Now let’s manipulate this expression so that we have an exponential growth function. Recall that the number can be
expressed as a limit:

Based on this, we want the expression inside the parentheses to have the form Let Note that as
as well. Then we get

We recognize the limit inside the brackets as the number So, the balance in our bank account after years is given by

Generalizing this concept, we see that if a bank account with an initial balance of earns interest at a rate
of compounded continuously, then the balance of the account after years is

Example 6.43

Compound Interest

A 25-year-old student is offered an opportunity to invest some money in a retirement account that pays
annual interest compounded continuously. How much does the student need to invest today to have million
when she retires at age What if she could earn annual interest compounded continuously instead?

Solution
We have

She must invest at interest.

If, instead, she is able to earn then the equation becomes

In this case, she needs to invest only This is roughly two-thirds the amount she needs to invest at
The fact that the interest is compounded continuously greatly magnifies the effect of the increase in

interest rate.

Suppose instead of investing at age , the student waits until age How much would she have to
invest at At

If a quantity grows exponentially, the time it takes for the quantity to double remains constant. In other words, it takes the
same amount of time for a population of bacteria to grow from to bacteria as it does to grow from to

bacteria. This time is called the doubling time. To calculate the doubling time, we want to know when the quantity
reaches twice its original size. So we have
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Definition

If a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double. It is given
by

Example 6.44

Using the Doubling Time

Assume a population of fish grows exponentially. A pond is stocked initially with fish. After months,
there are fish in the pond. The owner will allow his friends and neighbors to fish on his pond after the fish
population reaches When will the owner’s friends be allowed to fish?

Solution
We know it takes the population of fish months to double in size. So, if t represents time in months,
by the doubling-time formula, we have Then, Thus, the population is given by

To figure out when the population reaches fish, we must solve the following

equation:

The owner’s friends have to wait months (a little more than years) to fish in the pond.

Suppose it takes months for the fish population in Example 6.44 to reach fish. Under these
circumstances, how long do the owner’s friends have to wait?

Exponential Decay Model
Exponential functions can also be used to model populations that shrink (from disease, for example), or chemical
compounds that break down over time. We say that such systems exhibit exponential decay, rather than exponential growth.
The model is nearly the same, except there is a negative sign in the exponent. Thus, for some positive constant we have

As with exponential growth, there is a differential equation associated with exponential decay. We have
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Rule: Exponential Decay Model

Systems that exhibit exponential decay behave according to the model

where represents the initial state of the system and is a constant, called the decay constant.

The following figure shows a graph of a representative exponential decay function.

Figure 6.80 An example of exponential decay.

Let’s look at a physical application of exponential decay. Newton’s law of cooling says that an object cools at a rate
proportional to the difference between the temperature of the object and the temperature of the surroundings. In other words,
if represents the temperature of the object and represents the ambient temperature in a room, then

Note that this is not quite the right model for exponential decay. We want the derivative to be proportional to the function,
and this expression has the additional term. Fortunately, we can make a change of variables that resolves this issue. Let

Then and our equation becomes

From our previous work, we know this relationship between y and its derivative leads to exponential decay. Thus,

and we see that

where represents the initial temperature. Let’s apply this formula in the following example.

Example 6.45

Newton’s Law of Cooling

According to experienced baristas, the optimal temperature to serve coffee is between and
Suppose coffee is poured at a temperature of and after minutes in a room it has cooled to
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When is the coffee first cool enough to serve? When is the coffee too cold to serve? Round answers to
the nearest half minute.

Solution
We have

Then, the model is

The coffee reaches when

The coffee can be served about minutes after it is poured. The coffee reaches at

The coffee is too cold to be served about minutes after it is poured.

Suppose the room is warmer and, after minutes, the coffee has cooled only to When

is the coffee first cool enough to serve? When is the coffee be too cold to serve? Round answers to the nearest
half minute.

740 Chapter 6 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Just as systems exhibiting exponential growth have a constant doubling time, systems exhibiting exponential decay have a
constant half-life. To calculate the half-life, we want to know when the quantity reaches half its original size. Therefore, we
have

Note: This is the same expression we came up with for doubling time.

Definition

If a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It is
given by

Example 6.46

Radiocarbon Dating

One of the most common applications of an exponential decay model is carbon dating. decays (emits
a radioactive particle) at a regular and consistent exponential rate. Therefore, if we know how much carbon was
originally present in an object and how much carbon remains, we can determine the age of the object. The half-
life of is approximately years—meaning, after that many years, half the material has converted
from the original to the new nonradioactive If we have g today, how

much is left in years? If an artifact that originally contained g of carbon now contains g of carbon,
how old is it? Round the answer to the nearest hundred years.

Solution
We have

So, the model says

In years, we have

Therefore, in years, g of remains.

To determine the age of the artifact, we must solve

Chapter 6 | Applications of Integration 741



6.46

The artifact is about years old.

If we have g of how much is left after years? If an artifact that originally contained
g of carbon now contains of carbon, how old is it? Round the answer to the nearest hundred years.
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6.8 EXERCISES
True or False? If true, prove it. If false, find the true answer.

348. The doubling time for is

349. If you invest an annual rate of interest of
yields more money in the first year than a

continuous rate of interest.

350. If you leave a pot of tea at room temperature
and an identical pot in the refrigerator

with the tea in the refrigerator reaches a
drinkable temperature more than minutes
before the tea at room temperature.

351. If given a half-life of t years, the constant for

is calculated by

For the following exercises, use

352. If a culture of bacteria doubles in hours, how many
hours does it take to multiply by

353. If bacteria increase by a factor of in hours,
how many hours does it take to increase by

354. How old is a skull that contains one-fifth as much
radiocarbon as a modern skull? Note that the half-life of
radiocarbon is years.

355. If a relic contains as much radiocarbon as
new material, can it have come from the time of Christ
(approximately years ago)? Note that the half-life of
radiocarbon is years.

356. The population of Cairo grew from million to
million in years. Use an exponential model to find

when the population was million.

357. The populations of New York and Los Angeles are
growing at and a year, respectively. Starting
from million (New York) and million (Los Angeles),
when are the populations equal?

358. Suppose the value of in Japanese yen decreases
at per year. Starting from when will

359. The effect of advertising decays exponentially. If
of the population remembers a new product after

days, how long will remember it?

360. If at and at

what was at

361. If at and at when

does

362. If a bank offers annual interest of or
continuous interest of which has a better annual
yield?

363. What continuous interest rate has the same yield as
an annual rate of

364. If you deposit at annual interest, how
many years can you withdraw (starting after the first
year) without running out of money?

365. You are trying to save in years for
college tuition for your child. If interest is a continuous

how much do you need to invest initially?

366. You are cooling a turkey that was taken out of the
oven with an internal temperature of After
minutes of resting the turkey in a apartment, the
temperature has reached What is the temperature
of the turkey minutes after taking it out of the oven?

367. You are trying to thaw some vegetables that are
at a temperature of To thaw vegetables safely, you
must put them in the refrigerator, which has an ambient
temperature of You check on your vegetables
hours after putting them in the refrigerator to find that they
are now Plot the resulting temperature curve and use
it to determine when the vegetables reach

368. You are an archaeologist and are given a bone that is
claimed to be from a Tyrannosaurus Rex. You know these
dinosaurs lived during the Cretaceous Era million
years to million years ago), and you find by
radiocarbon dating that there is the amount of
radiocarbon. Is this bone from the Cretaceous?

369. The spent fuel of a nuclear reactor contains
plutonium-239, which has a half-life of years. If
barrel containing of plutonium-239 is sealed, how

many years must pass until only of plutonium-239 is

left?

For the next set of exercises, use the following table, which
features the world population by decade.
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Years since 1950 Population (millions)

Source: http://www.factmonster.com/ipka/
A0762181.html.

370. [T] The best-fit exponential curve to the data of the
form is given by Use
a graphing calculator to graph the data and the exponential
curve together.

371. [T] Find and graph the derivative of your

equation. Where is it increasing and what is the meaning of
this increase?

372. [T] Find and graph the second derivative of your
equation. Where is it increasing and what is the meaning of
this increase?

373. [T] Find the predicted date when the population
reaches billion. Using your previous answers about
the first and second derivatives, explain why exponential
growth is unsuccessful in predicting the future.

For the next set of exercises, use the following table, which
shows the population of San Francisco during the 19th
century.

Years since
1850

Population
(thousands)

Source: http://www.sfgenealogy.com/sf/history/
hgpop.htm.

374. [T] The best-fit exponential curve to the data of the
form is given by Use
a graphing calculator to graph the data and the exponential
curve together.

375. [T] Find and graph the derivative of your

equation. Where is it increasing? What is the meaning of
this increase? Is there a value where the increase is
maximal?

376. [T] Find and graph the second derivative of your
equation. Where is it increasing? What is the meaning of
this increase?
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6.9 | Calculus of the Hyperbolic Functions

Learning Objectives
6.9.1 Apply the formulas for derivatives and integrals of the hyperbolic functions.
6.9.2 Apply the formulas for the derivatives of the inverse hyperbolic functions and their
associated integrals.
6.9.3 Describe the common applied conditions of a catenary curve.

We were introduced to hyperbolic functions in Introduction to Functions and Graphs, along with some of their basic
properties. In this section, we look at differentiation and integration formulas for the hyperbolic functions and their inverses.

Derivatives and Integrals of the Hyperbolic Functions
Recall that the hyperbolic sine and hyperbolic cosine are defined as

The other hyperbolic functions are then defined in terms of and The graphs of the hyperbolic functions are
shown in the following figure.

Figure 6.81 Graphs of the hyperbolic functions.

It is easy to develop differentiation formulas for the hyperbolic functions. For example, looking at we have

Chapter 6 | Applications of Integration 745



Similarly, We summarize the differentiation formulas for the hyperbolic functions in the following
table.

Table 6.2 Derivatives of the
Hyperbolic Functions

Let’s take a moment to compare the derivatives of the hyperbolic functions with the derivatives of the standard
trigonometric functions. There are a lot of similarities, but differences as well. For example, the derivatives of the sine
functions match: and The derivatives of the cosine functions, however, differ
in sign: but As we continue our examination of the hyperbolic functions,
we must be mindful of their similarities and differences to the standard trigonometric functions.

These differentiation formulas for the hyperbolic functions lead directly to the following integral formulas.

Example 6.47

Differentiating Hyperbolic Functions

Evaluate the following derivatives:

a.
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b.

Solution
Using the formulas in Table 6.2 and the chain rule, we get

a.

b.

Evaluate the following derivatives:

a.

b.

Example 6.48

Integrals Involving Hyperbolic Functions

Evaluate the following integrals:

a.

b.

Solution
We can use u-substitution in both cases.

a. Let Then, and

b. Let Then, and

Note that for all so we can eliminate the absolute value signs and obtain
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6.48 Evaluate the following integrals:

a.

b.

Calculus of Inverse Hyperbolic Functions
Looking at the graphs of the hyperbolic functions, we see that with appropriate range restrictions, they all have inverses.
Most of the necessary range restrictions can be discerned by close examination of the graphs. The domains and ranges of
the inverse hyperbolic functions are summarized in the following table.

Function Domain Range

Table 6.3 Domains and Ranges of the Inverse Hyperbolic
Functions

The graphs of the inverse hyperbolic functions are shown in the following figure.
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Figure 6.82 Graphs of the inverse hyperbolic functions.

To find the derivatives of the inverse functions, we use implicit differentiation. We have

Recall that so Then,

We can derive differentiation formulas for the other inverse hyperbolic functions in a similar fashion. These differentiation
formulas are summarized in the following table.
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Table 6.4 Derivatives of the
Inverse Hyperbolic Functions

Note that the derivatives of and are the same. Thus, when we integrate we need to select

the proper antiderivative based on the domain of the functions and the values of Integration formulas involving the
inverse hyperbolic functions are summarized as follows.

Example 6.49

Differentiating Inverse Hyperbolic Functions

Evaluate the following derivatives:

a.

b.
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6.50

Solution
Using the formulas in Table 6.4 and the chain rule, we obtain the following results:

a.

b.

Evaluate the following derivatives:

a.

b.

Example 6.50

Integrals Involving Inverse Hyperbolic Functions

Evaluate the following integrals:

a.

b.

Solution
We can use in both cases.

a. Let Then, and we have

b. Let Then, and we obtain

Evaluate the following integrals:

a.

b.

Chapter 6 | Applications of Integration 751



Applications
One physical application of hyperbolic functions involves hanging cables. If a cable of uniform density is suspended
between two supports without any load other than its own weight, the cable forms a curve called a catenary. High-voltage
power lines, chains hanging between two posts, and strands of a spider’s web all form catenaries. The following figure
shows chains hanging from a row of posts.

Figure 6.83 Chains between these posts take the shape of a catenary. (credit: modification of work by OKFoundryCompany,
Flickr)

Hyperbolic functions can be used to model catenaries. Specifically, functions of the form are catenaries.

Figure 6.84 shows the graph of
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Figure 6.84 A hyperbolic cosine function forms the shape of
a catenary.

Example 6.51

Using a Catenary to Find the Length of a Cable

Assume a hanging cable has the shape for where is measured in feet.
Determine the length of the cable (in feet).

Solution
Recall from Section that the formula for arc length is

We have so Then

Now recall that so we have

Assume a hanging cable has the shape for Determine the length of the

cable (in feet).

Chapter 6 | Applications of Integration 753



6.9 EXERCISES
377. [T] Find expressions for and

Use a calculator to graph these functions
and ensure your expression is correct.

378. From the definitions of and find
their antiderivatives.

379. Show that and satisfy

380. Use the quotient rule to verify that

381. Derive from the
definition.

382. Take the derivative of the previous expression to find
an expression for

383. Prove
by

changing the expression to exponentials.

384. Take the derivative of the previous expression to find
an expression for

For the following exercises, find the derivatives of the
given functions and graph along with the function to ensure
your answer is correct.

385. [T]

386. [T]

387. [T]

388. [T]

389. [T]

390. [T]

391. [T]

392. [T]

393. [T]

394. [T]

For the following exercises, find the antiderivatives for the
given functions.

395.

396.

397.

398.

399.

400.

401.

402.

403.

404.

For the following exercises, find the derivatives for the
functions.

405.

406.

407.

408.

409.

410.

411.

For the following exercises, find the antiderivatives for the
functions.

412.

413.
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414.

415.

416.

417.

418.

For the following exercises, use the fact that a falling body
with friction equal to velocity squared obeys the equation

419. Show that satisfies this

equation.

420. Derive the previous expression for by

integrating

421. [T] Estimate how far a body has fallen in seconds
by finding the area underneath the curve of

For the following exercises, use this scenario: A cable
hanging under its own weight has a slope that

satisfies The constant is the ratio of
cable density to tension.

422. Show that satisfies this equation.

423. Integrate to find the cable height

if

424. Sketch the cable and determine how far down it sags
at

For the following exercises, solve each problem.

425. [T] A chain hangs from two posts m apart to form
a catenary described by the equation

Find the slope of the catenary at the left fence post.

426. [T] A chain hangs from two posts four meters apart
to form a catenary described by the equation

Find the total length of the catenary

(arc length).

427. [T] A high-voltage power line is a catenary described
by Find the ratio of the area under the

catenary to its arc length. What do you notice?

428. A telephone line is a catenary described by
Find the ratio of the area under the

catenary to its arc length. Does this confirm your answer
for the previous question?

429. Prove the formula for the derivative of
by differentiating (Hint: Use

hyperbolic trigonometric identities.)

430. Prove the formula for the derivative of
by differentiating (Hint:

Use hyperbolic trigonometric identities.)

431. Prove the formula for the derivative of
by differentiating (Hint: Use

hyperbolic trigonometric identities.)

432. Prove that

433. Prove the expression for Multiply

by and solve for

Does your expression match the textbook?

434. Prove the expression for Multiply

by and solve for

Does your expression match the textbook?
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arc length

catenary

center of mass

centroid

cross-section

density function

disk method

doubling time

exponential decay

exponential growth

frustum

half-life

Hooke’s law

hydrostatic pressure

lamina

method of cylindrical shells

moment

slicing method

solid of revolution

CHAPTER 6 REVIEW

KEY TERMS
the arc length of a curve can be thought of as the distance a person would travel along the path of the curve

a curve in the shape of the function is a catenary; a cable of uniform density suspended

between two supports assumes the shape of a catenary

the point at which the total mass of the system could be concentrated without changing the moment

the centroid of a region is the geometric center of the region; laminas are often represented by regions in the
plane; if the lamina has a constant density, the center of mass of the lamina depends only on the shape of the
corresponding planar region; in this case, the center of mass of the lamina corresponds to the centroid of the
representative region

the intersection of a plane and a solid object

a density function describes how mass is distributed throughout an object; it can be a linear density,
expressed in terms of mass per unit length; an area density, expressed in terms of mass per unit area; or a volume
density, expressed in terms of mass per unit volume; weight-density is also used to describe weight (rather than mass)
per unit volume

a special case of the slicing method used with solids of revolution when the slices are disks

if a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double,
and is given by

systems that exhibit exponential decay follow a model of the form

systems that exhibit exponential growth follow a model of the form

a portion of a cone; a frustum is constructed by cutting the cone with a plane parallel to the base

if a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It
is given by

this law states that the force required to compress (or elongate) a spring is proportional to the distance the
spring has been compressed (or stretched) from equilibrium; in other words, where is a constant

the pressure exerted by water on a submerged object

a thin sheet of material; laminas are thin enough that, for mathematical purposes, they can be treated as if they are
two-dimensional

a method of calculating the volume of a solid of revolution by dividing the solid into
nested cylindrical shells; this method is different from the methods of disks or washers in that we integrate with
respect to the opposite variable

if n masses are arranged on a number line, the moment of the system with respect to the origin is given by

if, instead, we consider a region in the plane, bounded above by a function over an interval

then the moments of the region with respect to the x- and y-axes are given by and

respectively

a method of calculating the volume of a solid that involves cutting the solid into pieces, estimating the
volume of each piece, then adding these estimates to arrive at an estimate of the total volume; as the number of slices
goes to infinity, this estimate becomes an integral that gives the exact value of the volume

a solid generated by revolving a region in a plane around a line in that plane
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surface area

symmetry principle

theorem of Pappus for volume

washer method

work

the surface area of a solid is the total area of the outer layer of the object; for objects such as cubes or
bricks, the surface area of the object is the sum of the areas of all of its faces

the symmetry principle states that if a region R is symmetric about a line l, then the centroid of R
lies on l

this theorem states that the volume of a solid of revolution formed by revolving a
region around an external axis is equal to the area of the region multiplied by the distance traveled by the centroid of
the region

a special case of the slicing method used with solids of revolution when the slices are washers

the amount of energy it takes to move an object; in physics, when a force is constant, work is expressed as the
product of force and distance

KEY EQUATIONS
• Area between two curves, integrating on the x-axis

• Area between two curves, integrating on the y-axis

• Disk Method along the x-axis

• Disk Method along the y-axis

• Washer Method

• Method of Cylindrical Shells

• Arc Length of a Function of x

• Arc Length of a Function of y

• Surface Area of a Function of x

• Mass of a one-dimensional object

• Mass of a circular object
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• Work done on an object

• Hydrostatic force on a plate

• Mass of a lamina

• Moments of a lamina

• Center of mass of a lamina

• Natural logarithm function

• Z

• Exponential function

• Z

KEY CONCEPTS
6.1 Areas between Curves

• Just as definite integrals can be used to find the area under a curve, they can also be used to find the area between
two curves.

• To find the area between two curves defined by functions, integrate the difference of the functions.

• If the graphs of the functions cross, or if the region is complex, use the absolute value of the difference of the
functions. In this case, it may be necessary to evaluate two or more integrals and add the results to find the area of
the region.

• Sometimes it can be easier to integrate with respect to y to find the area. The principles are the same regardless of
which variable is used as the variable of integration.

6.2 Determining Volumes by Slicing

• Definite integrals can be used to find the volumes of solids. Using the slicing method, we can find a volume by
integrating the cross-sectional area.

• For solids of revolution, the volume slices are often disks and the cross-sections are circles. The method of disks
involves applying the method of slicing in the particular case in which the cross-sections are circles, and using the
formula for the area of a circle.

• If a solid of revolution has a cavity in the center, the volume slices are washers. With the method of washers, the
area of the inner circle is subtracted from the area of the outer circle before integrating.

6.3 Volumes of Revolution: Cylindrical Shells

• The method of cylindrical shells is another method for using a definite integral to calculate the volume of a solid of
revolution. This method is sometimes preferable to either the method of disks or the method of washers because we
integrate with respect to the other variable. In some cases, one integral is substantially more complicated than the
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other.

• The geometry of the functions and the difficulty of the integration are the main factors in deciding which integration
method to use.

6.4 Arc Length of a Curve and Surface Area

• The arc length of a curve can be calculated using a definite integral.

• The arc length is first approximated using line segments, which generates a Riemann sum. Taking a limit then gives
us the definite integral formula. The same process can be applied to functions of

• The concepts used to calculate the arc length can be generalized to find the surface area of a surface of revolution.

• The integrals generated by both the arc length and surface area formulas are often difficult to evaluate. It may be
necessary to use a computer or calculator to approximate the values of the integrals.

6.5 Physical Applications

• Several physical applications of the definite integral are common in engineering and physics.

• Definite integrals can be used to determine the mass of an object if its density function is known.

• Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a
pumping problem.

• Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.

6.6 Moments and Centers of Mass

• Mathematically, the center of mass of a system is the point at which the total mass of the system could be
concentrated without changing the moment. Loosely speaking, the center of mass can be thought of as the balancing
point of the system.

• For point masses distributed along a number line, the moment of the system with respect to the origin is

For point masses distributed in a plane, the moments of the system with respect to the x- and

y-axes, respectively, are and respectively.

• For a lamina bounded above by a function the moments of the system with respect to the x- and y-axes,

respectively, are and

• The x- and y-coordinates of the center of mass can be found by dividing the moments around the y-axis and around
the x-axis, respectively, by the total mass. The symmetry principle says that if a region is symmetric with respect to
a line, then the centroid of the region lies on the line.

• The theorem of Pappus for volume says that if a region is revolved around an external axis, the volume of the
resulting solid is equal to the area of the region multiplied by the distance traveled by the centroid of the region.

6.7 Integrals, Exponential Functions, and Logarithms

• The earlier treatment of logarithms and exponential functions did not define the functions precisely and formally.
This section develops the concepts in a mathematically rigorous way.

• The cornerstone of the development is the definition of the natural logarithm in terms of an integral.

• The function is then defined as the inverse of the natural logarithm.

• General exponential functions are defined in terms of and the corresponding inverse functions are general
logarithms.
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• Familiar properties of logarithms and exponents still hold in this more rigorous context.

6.8 Exponential Growth and Decay

• Exponential growth and exponential decay are two of the most common applications of exponential functions.

• Systems that exhibit exponential growth follow a model of the form

• In exponential growth, the rate of growth is proportional to the quantity present. In other words,

• Systems that exhibit exponential growth have a constant doubling time, which is given by

• Systems that exhibit exponential decay follow a model of the form

• Systems that exhibit exponential decay have a constant half-life, which is given by

6.9 Calculus of the Hyperbolic Functions

• Hyperbolic functions are defined in terms of exponential functions.

• Term-by-term differentiation yields differentiation formulas for the hyperbolic functions. These differentiation
formulas give rise, in turn, to integration formulas.

• With appropriate range restrictions, the hyperbolic functions all have inverses.

• Implicit differentiation yields differentiation formulas for the inverse hyperbolic functions, which in turn give rise
to integration formulas.

• The most common physical applications of hyperbolic functions are calculations involving catenaries.

CHAPTER 6 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

435. The amount of work to pump the water out of a half-
full cylinder is half the amount of work to pump the water
out of the full cylinder.

436. If the force is constant, the amount of work to move
an object from to is

437. The disk method can be used in any situation in
which the washer method is successful at finding the
volume of a solid of revolution.

438. If the half-life of is ms, then

For the following exercises, use the requested method to
determine the volume of the solid.

439. The volume that has a base of the ellipse
and cross-sections of an equilateral

triangle perpendicular to the Use the method of

slicing.

440. from rotated around

they-axis using the washer method

441. and rotated around the y-axis using

the washer method

442. rotated around the

x-axis using cylindrical shells

For the following exercises, find

a. the area of the region,

b. the volume of the solid when rotated around the
x-axis, and

c. the volume of the solid when rotated around the
y-axis. Use whichever method seems most
appropriate to you.

443.

444.

445. [T]

446. and

447. and

760 Chapter 6 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



448. Below and above

449. Find the mass of on a disk centered at the

origin with radius

450. Find the center of mass for on

451. Find the mass and the center of mass of on

the region bounded by and

For the following exercises, find the requested arc lengths.

452. The length of for from

453. The length of for from to

For the following exercises, find the surface area and
volume when the given curves are revolved around the
specified axis.

454. The shape created by revolving the region between
and rotated

around the y-axis.

455. The loudspeaker created by revolving from

to around the x-axis.

For the following exercises, consider the Karun-3 dam in
Iran. Its shape can be approximated as an isosceles triangle
with height m and width m. Assume the current
depth of the water is m. The density of water is

kg/m

456. Find the total force on the wall of the dam.

457. You are a crime scene investigator attempting to
determine the time of death of a victim. It is noon and

outside and the temperature of the body is
You know the cooling constant is
When did the victim die, assuming that a human’s
temperature is ?

For the following exercise, consider the stock market crash
in in the United States. The table lists the Dow Jones
industrial average per year leading up to the crash.

Years after 1920 Value ($)

Source: http://stockcharts.com/
freecharts/historical/
djia19201940.html

458. [T] The best-fit exponential curve to these data is
given by Why do you think the gains

of the market were unsustainable? Use first and second
derivatives to help justify your answer. What would this
model predict the Dow Jones industrial average to be in

?

For the following exercises, consider the catenoid, the only
solid of revolution that has a minimal surface, or zero
mean curvature. A catenoid in nature can be found when
stretching soap between two rings.

459. Find the volume of the catenoid from

that is created by rotating this curve
around the as shown here.

460. Find surface area of the catenoid from

to that is created by rotating this curve
around the
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